Compare commits

..

1 commit
trunk ... v2.0

Author SHA1 Message Date
815d583f77 add unpatched version of 2.0 source 2024-08-09 15:25:42 +02:00
21 changed files with 3904 additions and 4 deletions

20
LICENSE Normal file
View file

@ -0,0 +1,20 @@
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

19
README Normal file
View file

@ -0,0 +1,19 @@
Directory overview:
==================
mtl/ Mini Template Library
core/ A core version of the solver
simp/ An extended solver with simplification capabilities
README
LICENSE
To build (release version: without assertions, statically linked, etc):
======================================================================
cd { core | simp }
gmake rs
Usage:
======
TODO

View file

@ -1,4 +0,0 @@
# Minisat
This Git repository holds all major release versions of [Minisat](http://minisat.se/Main.html) plus occasional patches for your convenience.
To get a specific version, see the branches of this repository.

344
core/Main.C Normal file
View file

@ -0,0 +1,344 @@
/******************************************************************************************[Main.C]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include <ctime>
#include <cstring>
#include <stdint.h>
#include <errno.h>
#include <signal.h>
#include <zlib.h>
#include "Solver.h"
/*************************************************************************************/
#ifdef _MSC_VER
#include <ctime>
static inline double cpuTime(void) {
return (double)clock() / CLOCKS_PER_SEC; }
#else
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
static inline double cpuTime(void) {
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
#endif
#if defined(__linux__)
static inline int memReadStat(int field)
{
char name[256];
pid_t pid = getpid();
sprintf(name, "/proc/%d/statm", pid);
FILE* in = fopen(name, "rb");
if (in == NULL) return 0;
int value;
for (; field >= 0; field--)
fscanf(in, "%d", &value);
fclose(in);
return value;
}
static inline uint64_t memUsed() { return (uint64_t)memReadStat(0) * (uint64_t)getpagesize(); }
#elif defined(__FreeBSD__)
static inline uint64_t memUsed(void) {
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
return ru.ru_maxrss*1024; }
#else
static inline uint64_t memUsed() { return 0; }
#endif
#if defined(__linux__)
#include <fpu_control.h>
#endif
//=================================================================================================
// DIMACS Parser:
#define CHUNK_LIMIT 1048576
class StreamBuffer {
gzFile in;
char buf[CHUNK_LIMIT];
int pos;
int size;
void assureLookahead() {
if (pos >= size) {
pos = 0;
size = gzread(in, buf, sizeof(buf)); } }
public:
StreamBuffer(gzFile i) : in(i), pos(0), size(0) {
assureLookahead(); }
int operator * () { return (pos >= size) ? EOF : buf[pos]; }
void operator ++ () { pos++; assureLookahead(); }
};
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
template<class B>
static void skipWhitespace(B& in) {
while ((*in >= 9 && *in <= 13) || *in == 32)
++in; }
template<class B>
static void skipLine(B& in) {
for (;;){
if (*in == EOF || *in == '\0') return;
if (*in == '\n') { ++in; return; }
++in; } }
template<class B>
static int parseInt(B& in) {
int val = 0;
bool neg = false;
skipWhitespace(in);
if (*in == '-') neg = true, ++in;
else if (*in == '+') ++in;
if (*in < '0' || *in > '9') reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
while (*in >= '0' && *in <= '9')
val = val*10 + (*in - '0'),
++in;
return neg ? -val : val; }
template<class B>
static void readClause(B& in, Solver& S, vec<Lit>& lits) {
int parsed_lit, var;
lits.clear();
for (;;){
parsed_lit = parseInt(in);
if (parsed_lit == 0) break;
var = abs(parsed_lit)-1;
while (var >= S.nVars()) S.newVar();
lits.push( (parsed_lit > 0) ? Lit(var) : ~Lit(var) );
}
}
template<class B>
static bool match(B& in, char* str) {
for (; *str != 0; ++str, ++in)
if (*str != *in)
return false;
return true;
}
template<class B>
static void parse_DIMACS_main(B& in, Solver& S) {
vec<Lit> lits;
for (;;){
skipWhitespace(in);
if (*in == EOF)
break;
else if (*in == 'p'){
if (match(in, "p cnf")){
int vars = parseInt(in);
int clauses = parseInt(in);
reportf("| Number of variables: %-12d |\n", vars);
reportf("| Number of clauses: %-12d |\n", clauses);
}else{
reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
}
} else if (*in == 'c' || *in == 'p')
skipLine(in);
else
readClause(in, S, lits),
S.addClause(lits);
}
}
// Inserts problem into solver.
//
static void parse_DIMACS(gzFile input_stream, Solver& S) {
StreamBuffer in(input_stream);
parse_DIMACS_main(in, S); }
//=================================================================================================
void printStats(Solver& solver)
{
double cpu_time = cpuTime();
uint64_t mem_used = memUsed();
reportf("restarts : %lld\n", solver.starts);
reportf("conflicts : %-12lld (%.0f /sec)\n", solver.conflicts , solver.conflicts /cpu_time);
reportf("decisions : %-12lld (%4.2f %% random) (%.0f /sec)\n", solver.decisions, (float)solver.rnd_decisions*100 / (float)solver.decisions, solver.decisions /cpu_time);
reportf("propagations : %-12lld (%.0f /sec)\n", solver.propagations, solver.propagations/cpu_time);
reportf("conflict literals : %-12lld (%4.2f %% deleted)\n", solver.tot_literals, (solver.max_literals - solver.tot_literals)*100 / (double)solver.max_literals);
if (mem_used != 0) reportf("Memory used : %.2f MB\n", mem_used / 1048576.0);
reportf("CPU time : %g s\n", cpu_time);
}
Solver* solver;
static void SIGINT_handler(int signum) {
reportf("\n"); reportf("*** INTERRUPTED ***\n");
printStats(*solver);
reportf("\n"); reportf("*** INTERRUPTED ***\n");
exit(1); }
//=================================================================================================
// Main:
void printUsage(char** argv)
{
reportf("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n\n", argv[0]);
reportf("OPTIONS:\n\n");
reportf(" -polarity-mode = {true,false,rnd}\n");
reportf(" -decay = <num> [ 0 - 1 ]\n");
reportf(" -rnd-freq = <num> [ 0 - 1 ]\n");
reportf(" -verbosity = {0,1,2}\n");
reportf("\n");
}
const char* hasPrefix(const char* str, const char* prefix)
{
int len = strlen(prefix);
if (strncmp(str, prefix, len) == 0)
return str + len;
else
return NULL;
}
int main(int argc, char** argv)
{
Solver S;
S.verbosity = 1;
int i, j;
const char* value;
for (i = j = 0; i < argc; i++){
if ((value = hasPrefix(argv[i], "-polarity-mode="))){
if (strcmp(value, "true") == 0)
S.polarity_mode = Solver::polarity_true;
else if (strcmp(value, "false") == 0)
S.polarity_mode = Solver::polarity_false;
else if (strcmp(value, "rnd") == 0)
S.polarity_mode = Solver::polarity_rnd;
else{
reportf("ERROR! unknown polarity-mode %s\n", value);
exit(0); }
}else if ((value = hasPrefix(argv[i], "-rnd-freq="))){
double rnd;
if (sscanf(value, "%lf", &rnd) <= 0 || rnd < 0 || rnd > 1){
reportf("ERROR! illegal rnd-freq constant %s\n", value);
exit(0); }
S.random_var_freq = rnd;
}else if ((value = hasPrefix(argv[i], "-decay="))){
double decay;
if (sscanf(value, "%lf", &decay) <= 0 || decay <= 0 || decay > 1){
reportf("ERROR! illegal decay constant %s\n", value);
exit(0); }
S.var_decay = 1 / decay;
}else if ((value = hasPrefix(argv[i], "-verbosity="))){
int verbosity = (int)strtol(value, NULL, 10);
if (verbosity == 0 && errno == EINVAL){
reportf("ERROR! illegal verbosity level %s\n", value);
exit(0); }
S.verbosity = verbosity;
}else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "-help") == 0 || strcmp(argv[i], "--help") == 0){
printUsage(argv);
exit(0);
}else if (strncmp(argv[i], "-", 1) == 0){
reportf("ERROR! unknown flag %s\n", argv[i]);
exit(0);
}else
argv[j++] = argv[i];
}
argc = j;
reportf("This is MiniSat 2.0 beta\n");
#if defined(__linux__)
fpu_control_t oldcw, newcw;
_FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
reportf("WARNING: for repeatability, setting FPU to use double precision\n");
#endif
double cpu_time = cpuTime();
solver = &S;
signal(SIGINT,SIGINT_handler);
signal(SIGHUP,SIGINT_handler);
if (argc == 1)
reportf("Reading from standard input... Use '-h' or '--help' for help.\n");
gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb");
if (in == NULL)
reportf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1);
reportf("============================[ Problem Statistics ]=============================\n");
reportf("| |\n");
parse_DIMACS(in, S);
gzclose(in);
FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL;
double parse_time = cpuTime() - cpu_time;
reportf("| Parsing time: %-12.2f s |\n", parse_time);
if (!S.simplify()){
reportf("Solved by unit propagation\n");
if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res);
printf("UNSATISFIABLE\n");
exit(20);
}
bool ret = S.solve();
printStats(S);
reportf("\n");
printf(ret ? "SATISFIABLE\n" : "UNSATISFIABLE\n");
if (res != NULL){
if (ret){
fprintf(res, "SAT\n");
for (int i = 0; i < S.nVars(); i++)
if (S.model[i] != l_Undef)
fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1);
fprintf(res, " 0\n");
}else
fprintf(res, "UNSAT\n");
fclose(res);
}
#ifdef NDEBUG
exit(ret ? 10 : 20); // (faster than "return", which will invoke the destructor for 'Solver')
#endif
}

7
core/Makefile Normal file
View file

@ -0,0 +1,7 @@
MTL = ../mtl
CHDRS = $(wildcard *.h) $(wildcard $(MTL)/*.h)
EXEC = minisat
CFLAGS = -I$(MTL) -Wall -ffloat-store
LFLAGS = -lz
include ../mtl/template.mk

741
core/Solver.C Normal file
View file

@ -0,0 +1,741 @@
/****************************************************************************************[Solver.C]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include "Solver.h"
#include "Sort.h"
#include <cmath>
//=================================================================================================
// Constructor/Destructor:
Solver::Solver() :
// Parameters: (formerly in 'SearchParams')
var_decay(1 / 0.95), clause_decay(1 / 0.999), random_var_freq(0.02)
, restart_first(100), restart_inc(1.5), learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
// More parameters:
//
, expensive_ccmin (true)
, polarity_mode (polarity_false)
, verbosity (0)
// Statistics: (formerly in 'SolverStats')
//
, starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
, clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
, ok (true)
, cla_inc (1)
, var_inc (1)
, qhead (0)
, simpDB_assigns (-1)
, simpDB_props (0)
, order_heap (VarOrderLt(activity))
, random_seed (91648253)
, progress_estimate(0)
, remove_satisfied (true)
{}
Solver::~Solver()
{
for (int i = 0; i < learnts.size(); i++) free(learnts[i]);
for (int i = 0; i < clauses.size(); i++) free(clauses[i]);
}
//=================================================================================================
// Minor methods:
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
//
Var Solver::newVar(bool sign, bool dvar)
{
int v = nVars();
watches .push(); // (list for positive literal)
watches .push(); // (list for negative literal)
reason .push(NULL);
assigns .push(toInt(l_Undef));
level .push(-1);
activity .push(0);
seen .push(0);
polarity .push((char)sign);
decision_var.push((char)dvar);
insertVarOrder(v);
return v;
}
bool Solver::addClause(vec<Lit>& ps)
{
assert(decisionLevel() == 0);
if (!ok)
return false;
else{
// Check if clause is satisfied and remove false/duplicate literals:
sort(ps);
Lit p; int i, j;
for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
if (value(ps[i]) == l_True || ps[i] == ~p)
return true;
else if (value(ps[i]) != l_False && ps[i] != p)
ps[j++] = p = ps[i];
ps.shrink(i - j);
}
if (ps.size() == 0)
return ok = false;
else if (ps.size() == 1){
assert(value(ps[0]) == l_Undef);
uncheckedEnqueue(ps[0]);
return ok = (propagate() == NULL);
}else{
Clause* c = Clause_new(ps, false);
clauses.push(c);
attachClause(*c);
}
return true;
}
void Solver::attachClause(Clause& c) {
assert(c.size() > 1);
watches[toInt(~c[0])].push(&c);
watches[toInt(~c[1])].push(&c);
if (c.learnt()) learnts_literals += c.size();
else clauses_literals += c.size(); }
void Solver::detachClause(Clause& c) {
assert(c.size() > 1);
assert(find(watches[toInt(~c[0])], &c));
assert(find(watches[toInt(~c[1])], &c));
remove(watches[toInt(~c[0])], &c);
remove(watches[toInt(~c[1])], &c);
if (c.learnt()) learnts_literals -= c.size();
else clauses_literals -= c.size(); }
void Solver::removeClause(Clause& c) {
detachClause(c);
free(&c); }
bool Solver::satisfied(const Clause& c) const {
for (int i = 0; i < c.size(); i++)
if (value(c[i]) == l_True)
return true;
return false; }
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
//
void Solver::cancelUntil(int level) {
if (decisionLevel() > level){
for (int c = trail.size()-1; c >= trail_lim[level]; c--){
Var x = var(trail[c]);
assigns[x] = toInt(l_Undef);
insertVarOrder(x); }
qhead = trail_lim[level];
trail.shrink(trail.size() - trail_lim[level]);
trail_lim.shrink(trail_lim.size() - level);
} }
//=================================================================================================
// Major methods:
Lit Solver::pickBranchLit(int polarity_mode, double random_var_freq)
{
Var next = var_Undef;
// Random decision:
if (drand(random_seed) < random_var_freq && !order_heap.empty()){
next = order_heap[irand(random_seed,order_heap.size())];
if (toLbool(assigns[next]) == l_Undef && decision_var[next])
rnd_decisions++; }
// Activity based decision:
while (next == var_Undef || toLbool(assigns[next]) != l_Undef || !decision_var[next])
if (order_heap.empty()){
next = var_Undef;
break;
}else
next = order_heap.removeMin();
bool sign = false;
switch (polarity_mode){
case polarity_true: sign = false; break;
case polarity_false: sign = true; break;
case polarity_user: sign = polarity[next]; break;
case polarity_rnd: sign = irand(random_seed, 2); break;
default: assert(false); }
return next == var_Undef ? lit_Undef : Lit(next, sign);
}
/*_________________________________________________________________________________________________
|
| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
|
| Description:
| Analyze conflict and produce a reason clause.
|
| Pre-conditions:
| * 'out_learnt' is assumed to be cleared.
| * Current decision level must be greater than root level.
|
| Post-conditions:
| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
|
| Effect:
| Will undo part of the trail, upto but not beyond the assumption of the current decision level.
|________________________________________________________________________________________________@*/
void Solver::analyze(Clause* confl, vec<Lit>& out_learnt, int& out_btlevel)
{
int pathC = 0;
Lit p = lit_Undef;
// Generate conflict clause:
//
out_learnt.push(); // (leave room for the asserting literal)
int index = trail.size() - 1;
out_btlevel = 0;
do{
assert(confl != NULL); // (otherwise should be UIP)
Clause& c = *confl;
if (c.learnt())
claBumpActivity(c);
for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
Lit q = c[j];
if (!seen[var(q)] && level[var(q)] > 0){
varBumpActivity(var(q));
seen[var(q)] = 1;
if (level[var(q)] >= decisionLevel())
pathC++;
else{
out_learnt.push(q);
if (level[var(q)] > out_btlevel)
out_btlevel = level[var(q)];
}
}
}
// Select next clause to look at:
while (!seen[var(trail[index--])]);
p = trail[index+1];
confl = reason[var(p)];
seen[var(p)] = 0;
pathC--;
}while (pathC > 0);
out_learnt[0] = ~p;
// Simplify conflict clause:
//
int i, j;
if (expensive_ccmin){
uint32_t abstract_level = 0;
for (i = 1; i < out_learnt.size(); i++)
abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
out_learnt.copyTo(analyze_toclear);
for (i = j = 1; i < out_learnt.size(); i++)
if (reason[var(out_learnt[i])] == NULL || !litRedundant(out_learnt[i], abstract_level))
out_learnt[j++] = out_learnt[i];
}else{
out_learnt.copyTo(analyze_toclear);
for (i = j = 1; i < out_learnt.size(); i++){
Clause& c = *reason[var(out_learnt[i])];
for (int k = 1; k < c.size(); k++)
if (!seen[var(c[k])] && level[var(c[k])] > 0){
out_learnt[j++] = out_learnt[i];
break; }
}
}
max_literals += out_learnt.size();
out_learnt.shrink(i - j);
tot_literals += out_learnt.size();
// Find correct backtrack level:
//
if (out_learnt.size() == 1)
out_btlevel = 0;
else{
int max_i = 1;
for (int i = 2; i < out_learnt.size(); i++)
if (level[var(out_learnt[i])] > level[var(out_learnt[max_i])])
max_i = i;
Lit p = out_learnt[max_i];
out_learnt[max_i] = out_learnt[1];
out_learnt[1] = p;
out_btlevel = level[var(p)];
}
for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared)
}
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
// visiting literals at levels that cannot be removed later.
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
{
analyze_stack.clear(); analyze_stack.push(p);
int top = analyze_toclear.size();
while (analyze_stack.size() > 0){
assert(reason[var(analyze_stack.last())] != NULL);
Clause& c = *reason[var(analyze_stack.last())]; analyze_stack.pop();
for (int i = 1; i < c.size(); i++){
Lit p = c[i];
if (!seen[var(p)] && level[var(p)] > 0){
if (reason[var(p)] != NULL && (abstractLevel(var(p)) & abstract_levels) != 0){
seen[var(p)] = 1;
analyze_stack.push(p);
analyze_toclear.push(p);
}else{
for (int j = top; j < analyze_toclear.size(); j++)
seen[var(analyze_toclear[j])] = 0;
analyze_toclear.shrink(analyze_toclear.size() - top);
return false;
}
}
}
}
return true;
}
/*_________________________________________________________________________________________________
|
| analyzeFinal : (p : Lit) -> [void]
|
| Description:
| Specialized analysis procedure to express the final conflict in terms of assumptions.
| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
| stores the result in 'out_conflict'.
|________________________________________________________________________________________________@*/
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
{
out_conflict.clear();
out_conflict.push(p);
if (decisionLevel() == 0)
return;
seen[var(p)] = 1;
for (int i = trail.size()-1; i >= trail_lim[0]; i--){
Var x = var(trail[i]);
if (seen[x]){
if (reason[x] == NULL){
assert(level[x] > 0);
out_conflict.push(~trail[i]);
}else{
Clause& c = *reason[x];
for (int j = 1; j < c.size(); j++)
if (level[var(c[j])] > 0)
seen[var(c[j])] = 1;
}
seen[x] = 0;
}
}
seen[var(p)] = 0;
}
void Solver::uncheckedEnqueue(Lit p, Clause* from)
{
assert(value(p) == l_Undef);
assigns [var(p)] = toInt(lbool(!sign(p))); // <<== abstract but not uttermost effecient
level [var(p)] = decisionLevel();
reason [var(p)] = from;
trail.push(p);
}
/*_________________________________________________________________________________________________
|
| propagate : [void] -> [Clause*]
|
| Description:
| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
| otherwise NULL.
|
| Post-conditions:
| * the propagation queue is empty, even if there was a conflict.
|________________________________________________________________________________________________@*/
Clause* Solver::propagate()
{
Clause* confl = NULL;
int num_props = 0;
while (qhead < trail.size()){
Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
vec<Clause*>& ws = watches[toInt(p)];
Clause **i, **j, **end;
num_props++;
for (i = j = (Clause**)ws, end = i + ws.size(); i != end;){
Clause& c = **i++;
// Make sure the false literal is data[1]:
Lit false_lit = ~p;
if (c[0] == false_lit)
c[0] = c[1], c[1] = false_lit;
assert(c[1] == false_lit);
// If 0th watch is true, then clause is already satisfied.
Lit first = c[0];
if (value(first) == l_True){
*j++ = &c;
}else{
// Look for new watch:
for (int k = 2; k < c.size(); k++)
if (value(c[k]) != l_False){
c[1] = c[k]; c[k] = false_lit;
watches[toInt(~c[1])].push(&c);
goto FoundWatch; }
// Did not find watch -- clause is unit under assignment:
*j++ = &c;
if (value(first) == l_False){
confl = &c;
qhead = trail.size();
// Copy the remaining watches:
while (i < end)
*j++ = *i++;
}else
uncheckedEnqueue(first, &c);
}
FoundWatch:;
}
ws.shrink(i - j);
}
propagations += num_props;
simpDB_props -= num_props;
return confl;
}
/*_________________________________________________________________________________________________
|
| reduceDB : () -> [void]
|
| Description:
| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
|________________________________________________________________________________________________@*/
struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } };
void Solver::reduceDB()
{
int i, j;
double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
sort(learnts, reduceDB_lt());
for (i = j = 0; i < learnts.size() / 2; i++){
if (learnts[i]->size() > 2 && !locked(*learnts[i]))
removeClause(*learnts[i]);
else
learnts[j++] = learnts[i];
}
for (; i < learnts.size(); i++){
if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim)
removeClause(*learnts[i]);
else
learnts[j++] = learnts[i];
}
learnts.shrink(i - j);
}
void Solver::removeSatisfied(vec<Clause*>& cs)
{
int i,j;
for (i = j = 0; i < cs.size(); i++){
if (satisfied(*cs[i]))
removeClause(*cs[i]);
else
cs[j++] = cs[i];
}
cs.shrink(i - j);
}
/*_________________________________________________________________________________________________
|
| simplify : [void] -> [bool]
|
| Description:
| Simplify the clause database according to the current top-level assigment. Currently, the only
| thing done here is the removal of satisfied clauses, but more things can be put here.
|________________________________________________________________________________________________@*/
bool Solver::simplify()
{
assert(decisionLevel() == 0);
if (!ok || propagate() != NULL)
return ok = false;
if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
return true;
// Remove satisfied clauses:
removeSatisfied(learnts);
if (remove_satisfied) // Can be turned off.
removeSatisfied(clauses);
// Remove fixed variables from the variable heap:
order_heap.filter(VarFilter(*this));
simpDB_assigns = nAssigns();
simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
return true;
}
/*_________________________________________________________________________________________________
|
| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool]
|
| Description:
| Search for a model the specified number of conflicts, keeping the number of learnt clauses
| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
| indicate infinity.
|
| Output:
| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
|________________________________________________________________________________________________@*/
lbool Solver::search(int nof_conflicts, int nof_learnts)
{
assert(ok);
int backtrack_level;
int conflictC = 0;
vec<Lit> learnt_clause;
starts++;
bool first = true;
for (;;){
Clause* confl = propagate();
if (confl != NULL){
// CONFLICT
conflicts++; conflictC++;
if (decisionLevel() == 0) return l_False;
first = false;
learnt_clause.clear();
analyze(confl, learnt_clause, backtrack_level);
cancelUntil(backtrack_level);
assert(value(learnt_clause[0]) == l_Undef);
if (learnt_clause.size() == 1){
uncheckedEnqueue(learnt_clause[0]);
}else{
Clause* c = Clause_new(learnt_clause, true);
learnts.push(c);
attachClause(*c);
claBumpActivity(*c);
uncheckedEnqueue(learnt_clause[0], c);
}
varDecayActivity();
claDecayActivity();
}else{
// NO CONFLICT
if (nof_conflicts >= 0 && conflictC >= nof_conflicts){
// Reached bound on number of conflicts:
progress_estimate = progressEstimate();
cancelUntil(0);
return l_Undef; }
// Simplify the set of problem clauses:
if (decisionLevel() == 0 && !simplify())
return l_False;
if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
// Reduce the set of learnt clauses:
reduceDB();
Lit next = lit_Undef;
while (decisionLevel() < assumptions.size()){
// Perform user provided assumption:
Lit p = assumptions[decisionLevel()];
if (value(p) == l_True){
// Dummy decision level:
newDecisionLevel();
}else if (value(p) == l_False){
analyzeFinal(~p, conflict);
return l_False;
}else{
next = p;
break;
}
}
if (next == lit_Undef){
// New variable decision:
decisions++;
next = pickBranchLit(polarity_mode, random_var_freq);
if (next == lit_Undef)
// Model found:
return l_True;
}
// Increase decision level and enqueue 'next'
assert(value(next) == l_Undef);
newDecisionLevel();
uncheckedEnqueue(next);
}
}
}
double Solver::progressEstimate() const
{
double progress = 0;
double F = 1.0 / nVars();
for (int i = 0; i <= decisionLevel(); i++){
int beg = i == 0 ? 0 : trail_lim[i - 1];
int end = i == decisionLevel() ? trail.size() : trail_lim[i];
progress += pow(F, i) * (end - beg);
}
return progress / nVars();
}
bool Solver::solve(const vec<Lit>& assumps)
{
model.clear();
conflict.clear();
if (!ok) return false;
assumps.copyTo(assumptions);
double nof_conflicts = restart_first;
double nof_learnts = nClauses() * learntsize_factor;
lbool status = l_Undef;
if (verbosity >= 1){
reportf("============================[ Search Statistics ]==============================\n");
reportf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
reportf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
reportf("===============================================================================\n");
}
// Search:
while (status == l_Undef){
if (verbosity >= 1)
reportf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", (int)conflicts, order_heap.size(), nClauses(), (int)clauses_literals, (int)nof_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100), fflush(stdout);
status = search((int)nof_conflicts, (int)nof_learnts);
nof_conflicts *= restart_inc;
nof_learnts *= learntsize_inc;
}
if (verbosity >= 1)
reportf("===============================================================================\n");
if (status == l_True){
// Extend & copy model:
model.growTo(nVars());
for (int i = 0; i < nVars(); i++) model[i] = value(i);
#ifndef NDEBUG
verifyModel();
#endif
}else{
assert(status == l_False);
if (conflict.size() == 0)
ok = false;
}
cancelUntil(0);
return status == l_True;
}
//=================================================================================================
// Debug methods:
void Solver::verifyModel()
{
bool failed = false;
for (int i = 0; i < clauses.size(); i++){
assert(clauses[i]->mark() == 0);
Clause& c = *clauses[i];
for (int j = 0; j < c.size(); j++)
if (modelValue(c[j]) == l_True)
goto next;
reportf("unsatisfied clause: ");
printClause(*clauses[i]);
reportf("\n");
failed = true;
next:;
}
assert(!failed);
reportf("Verified %d original clauses.\n", clauses.size());
}
void Solver::checkLiteralCount()
{
// Check that sizes are calculated correctly:
int cnt = 0;
for (int i = 0; i < clauses.size(); i++)
if (clauses[i]->mark() == 0)
cnt += clauses[i]->size();
if ((int)clauses_literals != cnt){
fprintf(stderr, "literal count: %d, real value = %d\n", (int)clauses_literals, cnt);
assert((int)clauses_literals == cnt);
}
}

302
core/Solver.h Normal file
View file

@ -0,0 +1,302 @@
/****************************************************************************************[Solver.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Solver_h
#define Solver_h
#include <cstdio>
#include "Vec.h"
#include "Heap.h"
#include "Alg.h"
#include "SolverTypes.h"
//=================================================================================================
// Solver -- the main class:
class Solver {
public:
// Constructor/Destructor:
//
Solver();
~Solver();
// Problem specification:
//
Var newVar (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
bool addClause (vec<Lit>& ps); // Add a clause to the solver. NOTE! 'ps' may be shrunk by this method!
// Solving:
//
bool simplify (); // Removes already satisfied clauses.
bool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
bool solve (); // Search without assumptions.
bool okay () const; // FALSE means solver is in a conflicting state
// Variable mode:
//
void setPolarity (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
// Read state:
//
lbool value (Var x) const; // The current value of a variable.
lbool value (Lit p) const; // The current value of a literal.
lbool modelValue (Lit p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable.
int nAssigns () const; // The current number of assigned literals.
int nClauses () const; // The current number of original clauses.
int nLearnts () const; // The current number of learnt clauses.
int nVars () const; // The current number of variables.
// Extra results: (read-only member variable)
//
vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions),
// this vector represent the final conflict clause expressed in the assumptions.
// Mode of operation:
//
double var_decay; // Inverse of the variable activity decay factor. (default 1 / 0.95)
double clause_decay; // Inverse of the clause activity decay factor. (1 / 0.999)
double random_var_freq; // The frequency with which the decision heuristic tries to choose a random variable. (default 0.02)
int restart_first; // The initial restart limit. (default 100)
double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5)
double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3)
double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)
bool expensive_ccmin; // Controls conflict clause minimization. (default TRUE)
int polarity_mode; // Controls which polarity the decision heuristic chooses. See enum below for allowed modes. (default polarity_false)
int verbosity; // Verbosity level. 0=silent, 1=some progress report (default 0)
enum { polarity_true = 0, polarity_false = 1, polarity_user = 2, polarity_rnd = 3 };
// Statistics: (read-only member variable)
//
uint64_t starts, decisions, rnd_decisions, propagations, conflicts;
uint64_t clauses_literals, learnts_literals, max_literals, tot_literals;
protected:
// Helper structures:
//
struct VarOrderLt {
const vec<double>& activity;
bool operator () (Var x, Var y) const { return activity[x] > activity[y]; }
VarOrderLt(const vec<double>& act) : activity(act) { }
};
friend class VarFilter;
struct VarFilter {
const Solver& s;
VarFilter(const Solver& _s) : s(_s) {}
bool operator()(Var v) const { return toLbool(s.assigns[v]) == l_Undef && s.decision_var[v]; }
};
// Solver state:
//
bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
vec<Clause*> clauses; // List of problem clauses.
vec<Clause*> learnts; // List of learnt clauses.
double cla_inc; // Amount to bump next clause with.
vec<double> activity; // A heuristic measurement of the activity of a variable.
double var_inc; // Amount to bump next variable with.
vec<vec<Clause*> > watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
vec<char> assigns; // The current assignments (lbool:s stored as char:s).
vec<char> polarity; // The preferred polarity of each variable.
vec<char> decision_var; // Declares if a variable is eligible for selection in the decision heuristic.
vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
vec<int> trail_lim; // Separator indices for different decision levels in 'trail'.
vec<Clause*> reason; // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
vec<int> level; // 'level[var]' contains the level at which the assignment was made.
int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
int simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'.
int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'.
vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
Heap<VarOrderLt> order_heap; // A priority queue of variables ordered with respect to the variable activity.
double random_seed; // Used by the random variable selection.
double progress_estimate;// Set by 'search()'.
bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
// Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
// used, exept 'seen' wich is used in several places.
//
vec<char> seen;
vec<Lit> analyze_stack;
vec<Lit> analyze_toclear;
vec<Lit> add_tmp;
// Main internal methods:
//
void insertVarOrder (Var x); // Insert a variable in the decision order priority queue.
Lit pickBranchLit (int polarity_mode, double random_var_freq); // Return the next decision variable.
void newDecisionLevel (); // Begins a new decision level.
void uncheckedEnqueue (Lit p, Clause* from = NULL); // Enqueue a literal. Assumes value of literal is undefined.
bool enqueue (Lit p, Clause* from = NULL); // Test if fact 'p' contradicts current state, enqueue otherwise.
Clause* propagate (); // Perform unit propagation. Returns possibly conflicting clause.
void cancelUntil (int level); // Backtrack until a certain level.
void analyze (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
void analyzeFinal (Lit p, vec<Lit>& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
bool litRedundant (Lit p, uint32_t abstract_levels); // (helper method for 'analyze()')
lbool search (int nof_conflicts, int nof_learnts); // Search for a given number of conflicts.
void reduceDB (); // Reduce the set of learnt clauses.
void removeSatisfied (vec<Clause*>& cs); // Shrink 'cs' to contain only non-satisfied clauses.
// Maintaining Variable/Clause activity:
//
void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
void varBumpActivity (Var v); // Increase a variable with the current 'bump' value.
void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
void claBumpActivity (Clause& c); // Increase a clause with the current 'bump' value.
// Operations on clauses:
//
void attachClause (Clause& c); // Attach a clause to watcher lists.
void detachClause (Clause& c); // Detach a clause to watcher lists.
void removeClause (Clause& c); // Detach and free a clause.
bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
bool satisfied (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state.
// Misc:
//
int decisionLevel () const; // Gives the current decisionlevel.
uint32_t abstractLevel (Var x) const; // Used to represent an abstraction of sets of decision levels.
double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
// Debug:
void printLit (Lit l);
template<class C>
void printClause (const C& c);
void verifyModel ();
void checkLiteralCount();
// Static helpers:
//
// Returns a random float 0 <= x < 1. Seed must never be 0.
static inline double drand(double& seed) {
seed *= 1389796;
int q = (int)(seed / 2147483647);
seed -= (double)q * 2147483647;
return seed / 2147483647; }
// Returns a random integer 0 <= x < size. Seed must never be 0.
static inline int irand(double& seed, int size) {
return (int)(drand(seed) * size); }
};
//=================================================================================================
// Implementation of inline methods:
inline void Solver::insertVarOrder(Var x) {
if (!order_heap.inHeap(x) && decision_var[x]) order_heap.insert(x); }
inline void Solver::varDecayActivity() { var_inc *= var_decay; }
inline void Solver::varBumpActivity(Var v) {
if ( (activity[v] += var_inc) > 1e100 ) {
// Rescale:
for (int i = 0; i < nVars(); i++)
activity[i] *= 1e-100;
var_inc *= 1e-100; }
// Update order_heap with respect to new activity:
if (order_heap.inHeap(v))
order_heap.decrease(v); }
inline void Solver::claDecayActivity() { cla_inc *= clause_decay; }
inline void Solver::claBumpActivity (Clause& c) {
if ( (c.activity() += cla_inc) > 1e20 ) {
// Rescale:
for (int i = 0; i < learnts.size(); i++)
learnts[i]->activity() *= 1e-20;
cla_inc *= 1e-20; } }
inline bool Solver::enqueue (Lit p, Clause* from) { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); }
inline bool Solver::locked (const Clause& c) const { return reason[var(c[0])] == &c && value(c[0]) == l_True; }
inline void Solver::newDecisionLevel() { trail_lim.push(trail.size()); }
inline int Solver::decisionLevel () const { return trail_lim.size(); }
inline uint32_t Solver::abstractLevel (Var x) const { return 1 << (level[x] & 31); }
inline lbool Solver::value (Var x) const { return toLbool(assigns[x]); }
inline lbool Solver::value (Lit p) const { return toLbool(assigns[var(p)]) ^ sign(p); }
inline lbool Solver::modelValue (Lit p) const { return model[var(p)] ^ sign(p); }
inline int Solver::nAssigns () const { return trail.size(); }
inline int Solver::nClauses () const { return clauses.size(); }
inline int Solver::nLearnts () const { return learnts.size(); }
inline int Solver::nVars () const { return assigns.size(); }
inline void Solver::setPolarity (Var v, bool b) { polarity [v] = (char)b; }
inline void Solver::setDecisionVar(Var v, bool b) { decision_var[v] = (char)b; if (b) { insertVarOrder(v); } }
inline bool Solver::solve () { vec<Lit> tmp; return solve(tmp); }
inline bool Solver::okay () const { return ok; }
//=================================================================================================
// Debug + etc:
#define reportf(format, args...) ( fflush(stdout), fprintf(stderr, format, ## args), fflush(stderr) )
static inline void logLit(FILE* f, Lit l)
{
fprintf(f, "%sx%d", sign(l) ? "~" : "", var(l)+1);
}
static inline void logLits(FILE* f, const vec<Lit>& ls)
{
fprintf(f, "[ ");
if (ls.size() > 0){
logLit(f, ls[0]);
for (int i = 1; i < ls.size(); i++){
fprintf(f, ", ");
logLit(f, ls[i]);
}
}
fprintf(f, "] ");
}
static inline const char* showBool(bool b) { return b ? "true" : "false"; }
// Just like 'assert()' but expression will be evaluated in the release version as well.
static inline void check(bool expr) { assert(expr); }
inline void Solver::printLit(Lit l)
{
reportf("%s%d:%c", sign(l) ? "-" : "", var(l)+1, value(l) == l_True ? '1' : (value(l) == l_False ? '0' : 'X'));
}
template<class C>
inline void Solver::printClause(const C& c)
{
for (int i = 0; i < c.size(); i++){
printLit(c[i]);
fprintf(stderr, " ");
}
}
//=================================================================================================
#endif

197
core/SolverTypes.h Normal file
View file

@ -0,0 +1,197 @@
/***********************************************************************************[SolverTypes.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef SolverTypes_h
#define SolverTypes_h
#include <cassert>
#include <stdint.h>
//=================================================================================================
// Variables, literals, lifted booleans, clauses:
// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
// so that they can be used as array indices.
typedef int Var;
#define var_Undef (-1)
class Lit {
int x;
public:
Lit() : x(2*var_Undef) { } // (lit_Undef)
explicit Lit(Var var, bool sign = false) : x((var+var) + (int)sign) { }
// Don't use these for constructing/deconstructing literals. Use the normal constructors instead.
friend int toInt (Lit p); // Guarantees small, positive integers suitable for array indexing.
friend Lit toLit (int i); // Inverse of 'toInt()'
friend Lit operator ~(Lit p);
friend bool sign (Lit p);
friend int var (Lit p);
friend Lit unsign (Lit p);
friend Lit id (Lit p, bool sgn);
bool operator == (Lit p) const { return x == p.x; }
bool operator != (Lit p) const { return x != p.x; }
bool operator < (Lit p) const { return x < p.x; } // '<' guarantees that p, ~p are adjacent in the ordering.
};
inline int toInt (Lit p) { return p.x; }
inline Lit toLit (int i) { Lit p; p.x = i; return p; }
inline Lit operator ~(Lit p) { Lit q; q.x = p.x ^ 1; return q; }
inline bool sign (Lit p) { return p.x & 1; }
inline int var (Lit p) { return p.x >> 1; }
inline Lit unsign (Lit p) { Lit q; q.x = p.x & ~1; return q; }
inline Lit id (Lit p, bool sgn) { Lit q; q.x = p.x ^ (int)sgn; return q; }
const Lit lit_Undef(var_Undef, false); // }- Useful special constants.
const Lit lit_Error(var_Undef, true ); // }
//=================================================================================================
// Lifted booleans:
class lbool {
char value;
explicit lbool(int v) : value(v) { }
public:
lbool() : value(0) { }
lbool(bool x) : value((int)x*2-1) { }
int toInt(void) const { return value; }
bool operator == (lbool b) const { return value == b.value; }
bool operator != (lbool b) const { return value != b.value; }
lbool operator ^ (bool b) const { return b ? lbool(-value) : lbool(value); }
friend int toInt (lbool l);
friend lbool toLbool(int v);
};
inline int toInt (lbool l) { return l.toInt(); }
inline lbool toLbool(int v) { return lbool(v); }
const lbool l_True = toLbool( 1);
const lbool l_False = toLbool(-1);
const lbool l_Undef = toLbool( 0);
//=================================================================================================
// Clause -- a simple class for representing a clause:
class Clause {
uint32_t size_etc;
union { float act; uint32_t abst; } extra;
Lit data[0];
public:
void calcAbstraction() {
uint32_t abstraction = 0;
for (int i = 0; i < size(); i++)
abstraction |= 1 << (var(data[i]) & 31);
extra.abst = abstraction; }
// NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
template<class V>
Clause(const V& ps, bool learnt) {
size_etc = (ps.size() << 3) | (uint32_t)learnt;
for (int i = 0; i < ps.size(); i++) data[i] = ps[i];
if (learnt) extra.act = 0; else calcAbstraction(); }
// -- use this function instead:
template<class V>
friend Clause* Clause_new(const V& ps, bool learnt = false) {
assert(sizeof(Lit) == sizeof(uint32_t));
assert(sizeof(float) == sizeof(uint32_t));
void* mem = malloc(sizeof(Clause) + sizeof(uint32_t)*(ps.size()));
return new (mem) Clause(ps, learnt); }
int size () const { return size_etc >> 3; }
void shrink (int i) { assert(i <= size()); size_etc = (((size_etc >> 3) - i) << 3) | (size_etc & 7); }
void pop () { shrink(1); }
bool learnt () const { return size_etc & 1; }
uint32_t mark () const { return (size_etc >> 1) & 3; }
void mark (uint32_t m) { size_etc = (size_etc & ~6) | ((m & 3) << 1); }
const Lit& last () const { return data[size()-1]; }
// NOTE: somewhat unsafe to change the clause in-place! Must manually call 'calcAbstraction' afterwards for
// subsumption operations to behave correctly.
Lit& operator [] (int i) { return data[i]; }
Lit operator [] (int i) const { return data[i]; }
operator const Lit* (void) const { return data; }
float& activity () { return extra.act; }
uint32_t abstraction () const { return extra.abst; }
Lit subsumes (const Clause& other) const;
void strengthen (Lit p);
};
/*_________________________________________________________________________________________________
|
| subsumes : (other : const Clause&) -> Lit
|
| Description:
| Checks if clause subsumes 'other', and at the same time, if it can be used to simplify 'other'
| by subsumption resolution.
|
| Result:
| lit_Error - No subsumption or simplification
| lit_Undef - Clause subsumes 'other'
| p - The literal p can be deleted from 'other'
|________________________________________________________________________________________________@*/
inline Lit Clause::subsumes(const Clause& other) const
{
if (other.size() < size() || (extra.abst & ~other.extra.abst) != 0)
return lit_Error;
Lit ret = lit_Undef;
const Lit* c = (const Lit*)(*this);
const Lit* d = (const Lit*)other;
for (int i = 0; i < size(); i++) {
// search for c[i] or ~c[i]
for (int j = 0; j < other.size(); j++)
if (c[i] == d[j])
goto ok;
else if (ret == lit_Undef && c[i] == ~d[j]){
ret = c[i];
goto ok;
}
// did not find it
return lit_Error;
ok:;
}
return ret;
}
inline void Clause::strengthen(Lit p)
{
remove(*this, p);
calcAbstraction();
}
#endif

57
mtl/Alg.h Normal file
View file

@ -0,0 +1,57 @@
/*******************************************************************************************[Alg.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Alg_h
#define Alg_h
//=================================================================================================
// Useful functions on vectors
#if 1
template<class V, class T>
static inline void remove(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++);
assert(j < ts.size());
for (; j < ts.size()-1; j++) ts[j] = ts[j+1];
ts.pop();
}
#else
template<class V, class T>
static inline void remove(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++);
assert(j < ts.size());
ts[j] = ts.last();
ts.pop();
}
#endif
template<class V, class T>
static inline bool find(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++);
return j < ts.size();
}
#endif

98
mtl/BasicHeap.h Normal file
View file

@ -0,0 +1,98 @@
/******************************************************************************************[Heap.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef BasicHeap_h
#define BasicHeap_h
#include "Vec.h"
//=================================================================================================
// A heap implementation with support for decrease/increase key.
template<class Comp>
class BasicHeap {
Comp lt;
vec<int> heap; // heap of ints
// Index "traversal" functions
static inline int left (int i) { return i*2+1; }
static inline int right (int i) { return (i+1)*2; }
static inline int parent(int i) { return (i-1) >> 1; }
inline void percolateUp(int i)
{
int x = heap[i];
while (i != 0 && lt(x, heap[parent(i)])){
heap[i] = heap[parent(i)];
i = parent(i);
}
heap [i] = x;
}
inline void percolateDown(int i)
{
int x = heap[i];
while (left(i) < heap.size()){
int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
if (!lt(heap[child], x)) break;
heap[i] = heap[child];
i = child;
}
heap[i] = x;
}
bool heapProperty(int i) {
return i >= heap.size()
|| ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
public:
BasicHeap(const C& c) : comp(c) { }
int size () const { return heap.size(); }
bool empty () const { return heap.size() == 0; }
int operator[](int index) const { return heap[index+1]; }
void clear (bool dealloc = false) { heap.clear(dealloc); }
void insert (int n) { heap.push(n); percolateUp(heap.size()-1); }
int removeMin() {
int r = heap[0];
heap[0] = heap.last();
heap.pop();
if (heap.size() > 1) percolateDown(0);
return r;
}
// DEBUG: consistency checking
bool heapProperty() {
return heapProperty(1); }
// COMPAT: should be removed
int getmin () { return removeMin(); }
};
//=================================================================================================
#endif

147
mtl/BoxedVec.h Normal file
View file

@ -0,0 +1,147 @@
/*******************************************************************************************[Vec.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef BoxedVec_h
#define BoxedVec_h
#include <cstdlib>
#include <cassert>
#include <new>
//=================================================================================================
// Automatically resizable arrays
//
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
template<class T>
class bvec {
static inline int imin(int x, int y) {
int mask = (x-y) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
static inline int imax(int x, int y) {
int mask = (y-x) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
struct Vec_t {
int sz;
int cap;
T data[0];
static Vec_t* alloc(Vec_t* x, int size){
x = (Vec_t*)realloc((void*)x, sizeof(Vec_t) + sizeof(T)*size);
x->cap = size;
return x;
}
};
Vec_t* ref;
static const int init_size = 2;
static int nextSize (int current) { return (current * 3 + 1) >> 1; }
static int fitSize (int needed) { int x; for (x = init_size; needed > x; x = nextSize(x)); return x; }
void fill (int size) {
assert(ref != NULL);
for (T* i = ref->data; i < ref->data + size; i++)
new (i) T();
}
void fill (int size, const T& pad) {
assert(ref != NULL);
for (T* i = ref->data; i < ref->data + size; i++)
new (i) T(pad);
}
// Don't allow copying (error prone):
altvec<T>& operator = (altvec<T>& other) { assert(0); }
altvec (altvec<T>& other) { assert(0); }
public:
void clear (bool dealloc = false) {
if (ref != NULL){
for (int i = 0; i < ref->sz; i++)
(*ref).data[i].~T();
if (dealloc) {
free(ref); ref = NULL;
}else
ref->sz = 0;
}
}
// Constructors:
altvec(void) : ref (NULL) { }
altvec(int size) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size); ref->sz = size; }
altvec(int size, const T& pad) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size, pad); ref->sz = size; }
~altvec(void) { clear(true); }
// Ownership of underlying array:
operator T* (void) { return ref->data; } // (unsafe but convenient)
operator const T* (void) const { return ref->data; }
// Size operations:
int size (void) const { return ref != NULL ? ref->sz : 0; }
void pop (void) { assert(ref != NULL && ref->sz > 0); int last = --ref->sz; ref->data[last].~T(); }
void push (const T& elem) {
int size = ref != NULL ? ref->sz : 0;
int cap = ref != NULL ? ref->cap : 0;
if (size == cap){
cap = cap != 0 ? nextSize(cap) : init_size;
ref = Vec_t::alloc(ref, cap);
}
//new (&ref->data[size]) T(elem);
ref->data[size] = elem;
ref->sz = size+1;
}
void push () {
int size = ref != NULL ? ref->sz : 0;
int cap = ref != NULL ? ref->cap : 0;
if (size == cap){
cap = cap != 0 ? nextSize(cap) : init_size;
ref = Vec_t::alloc(ref, cap);
}
new (&ref->data[size]) T();
ref->sz = size+1;
}
void shrink (int nelems) { for (int i = 0; i < nelems; i++) pop(); }
void shrink_(int nelems) { for (int i = 0; i < nelems; i++) pop(); }
void growTo (int size) { while (this->size() < size) push(); }
void growTo (int size, const T& pad) { while (this->size() < size) push(pad); }
void capacity (int size) { growTo(size); }
const T& last (void) const { return ref->data[ref->sz-1]; }
T& last (void) { return ref->data[ref->sz-1]; }
// Vector interface:
const T& operator [] (int index) const { return ref->data[index]; }
T& operator [] (int index) { return ref->data[index]; }
void copyTo(altvec<T>& copy) const { copy.clear(); for (int i = 0; i < size(); i++) copy.push(ref->data[i]); }
void moveTo(altvec<T>& dest) { dest.clear(true); dest.ref = ref; ref = NULL; }
};
#endif

169
mtl/Heap.h Normal file
View file

@ -0,0 +1,169 @@
/******************************************************************************************[Heap.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Heap_h
#define Heap_h
#include "Vec.h"
//=================================================================================================
// A heap implementation with support for decrease/increase key.
template<class Comp>
class Heap {
Comp lt;
vec<int> heap; // heap of ints
vec<int> indices; // int -> index in heap
// Index "traversal" functions
static inline int left (int i) { return i*2+1; }
static inline int right (int i) { return (i+1)*2; }
static inline int parent(int i) { return (i-1) >> 1; }
inline void percolateUp(int i)
{
int x = heap[i];
while (i != 0 && lt(x, heap[parent(i)])){
heap[i] = heap[parent(i)];
indices[heap[i]] = i;
i = parent(i);
}
heap [i] = x;
indices[x] = i;
}
inline void percolateDown(int i)
{
int x = heap[i];
while (left(i) < heap.size()){
int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
if (!lt(heap[child], x)) break;
heap[i] = heap[child];
indices[heap[i]] = i;
i = child;
}
heap [i] = x;
indices[x] = i;
}
bool heapProperty (int i) const {
return i >= heap.size()
|| ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
public:
Heap(const Comp& c) : lt(c) { }
int size () const { return heap.size(); }
bool empty () const { return heap.size() == 0; }
bool inHeap (int n) const { return n < indices.size() && indices[n] >= 0; }
int operator[](int index) const { assert(index < heap.size()); return heap[index]; }
void decrease (int n) { assert(inHeap(n)); percolateUp(indices[n]); }
// RENAME WHEN THE DEPRECATED INCREASE IS REMOVED.
void increase_ (int n) { assert(inHeap(n)); percolateDown(indices[n]); }
void insert(int n)
{
indices.growTo(n+1, -1);
assert(!inHeap(n));
indices[n] = heap.size();
heap.push(n);
percolateUp(indices[n]);
}
int removeMin()
{
int x = heap[0];
heap[0] = heap.last();
indices[heap[0]] = 0;
indices[x] = -1;
heap.pop();
if (heap.size() > 1) percolateDown(0);
return x;
}
void clear(bool dealloc = false)
{
for (int i = 0; i < heap.size(); i++)
indices[heap[i]] = -1;
#ifdef NDEBUG
for (int i = 0; i < indices.size(); i++)
assert(indices[i] == -1);
#endif
heap.clear(dealloc);
}
// Fool proof variant of insert/decrease/increase
void update (int n)
{
if (!inHeap(n))
insert(n);
else {
percolateUp(indices[n]);
percolateDown(indices[n]);
}
}
// Delete elements from the heap using a given filter function (-object).
// *** this could probaly be replaced with a more general "buildHeap(vec<int>&)" method ***
template <class F>
void filter(const F& filt) {
int i,j;
for (i = j = 0; i < heap.size(); i++)
if (filt(heap[i])){
heap[j] = heap[i];
indices[heap[i]] = j++;
}else
indices[heap[i]] = -1;
heap.shrink(i - j);
for (int i = heap.size() / 2 - 1; i >= 0; i--)
percolateDown(i);
assert(heapProperty());
}
// DEBUG: consistency checking
bool heapProperty() const {
return heapProperty(1); }
// COMPAT: should be removed
void setBounds (int n) { }
void increase (int n) { decrease(n); }
int getmin () { return removeMin(); }
};
//=================================================================================================
#endif

118
mtl/Map.h Normal file
View file

@ -0,0 +1,118 @@
/*******************************************************************************************[Map.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Map_h
#define Map_h
#include <stdint.h>
#include "Vec.h"
//=================================================================================================
// Default hash/equals functions
//
template<class K> struct Hash { uint32_t operator()(const K& k) const { return hash(k); } };
template<class K> struct Equal { bool operator()(const K& k1, const K& k2) const { return k1 == k2; } };
template<class K> struct DeepHash { uint32_t operator()(const K* k) const { return hash(*k); } };
template<class K> struct DeepEqual { bool operator()(const K* k1, const K* k2) const { return *k1 == *k2; } };
//=================================================================================================
// Some primes
//
static const int nprimes = 25;
static const int primes [nprimes] = { 31, 73, 151, 313, 643, 1291, 2593, 5233, 10501, 21013, 42073, 84181, 168451, 337219, 674701, 1349473, 2699299, 5398891, 10798093, 21596719, 43193641, 86387383, 172775299, 345550609, 691101253 };
//=================================================================================================
// Hash table implementation of Maps
//
template<class K, class D, class H = Hash<K>, class E = Equal<K> >
class Map {
struct Pair { K key; D data; };
H hash;
E equals;
vec<Pair>* table;
int cap;
int size;
// Don't allow copying (error prone):
Map<K,D,H,E>& operator = (Map<K,D,H,E>& other) { assert(0); }
Map (Map<K,D,H,E>& other) { assert(0); }
int32_t index (const K& k) const { return hash(k) % cap; }
void _insert (const K& k, const D& d) { table[index(k)].push(); table[index(k)].last().key = k; table[index(k)].last().data = d; }
void rehash () {
const vec<Pair>* old = table;
int newsize = primes[0];
for (int i = 1; newsize <= cap && i < nprimes; i++)
newsize = primes[i];
table = new vec<Pair>[newsize];
for (int i = 0; i < cap; i++){
for (int j = 0; j < old[i].size(); j++){
_insert(old[i][j].key, old[i][j].data); }}
delete [] old;
cap = newsize;
}
public:
Map () : table(NULL), cap(0), size(0) {}
Map (const H& h, const E& e) : Map(), hash(h), equals(e) {}
~Map () { delete [] table; }
void insert (const K& k, const D& d) { if (size+1 > cap / 2) rehash(); _insert(k, d); size++; }
bool peek (const K& k, D& d) {
if (size == 0) return false;
const vec<Pair>& ps = table[index(k)];
for (int i = 0; i < ps.size(); i++)
if (equals(ps[i].key, k)){
d = ps[i].data;
return true; }
return false;
}
void remove (const K& k) {
assert(table != NULL);
vec<Pair>& ps = table[index(k)];
int j = 0;
for (; j < ps.size() && !equals(ps[j].key, k); j++);
assert(j < ps.size());
ps[j] = ps.last();
ps.pop();
}
void clear () {
cap = size = 0;
delete [] table;
table = NULL;
}
};
#endif

82
mtl/Queue.h Normal file
View file

@ -0,0 +1,82 @@
/*****************************************************************************************[Queue.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Queue_h
#define Queue_h
#include "Vec.h"
//=================================================================================================
template <class T>
class Queue {
vec<T> elems;
int first;
public:
Queue(void) : first(0) { }
void insert(T x) { elems.push(x); }
T peek () const { return elems[first]; }
void pop () { first++; }
void clear(bool dealloc = false) { elems.clear(dealloc); first = 0; }
int size(void) { return elems.size() - first; }
//bool has(T x) { for (int i = first; i < elems.size(); i++) if (elems[i] == x) return true; return false; }
const T& operator [] (int index) const { return elems[first + index]; }
};
//template<class T>
//class Queue {
// vec<T> buf;
// int first;
// int end;
//
//public:
// typedef T Key;
//
// Queue() : buf(1), first(0), end(0) {}
//
// void clear () { buf.shrinkTo(1); first = end = 0; }
// int size () { return (end >= first) ? end - first : end - first + buf.size(); }
//
// T peek () { assert(first != end); return buf[first]; }
// void pop () { assert(first != end); first++; if (first == buf.size()) first = 0; }
// void insert(T elem) { // INVARIANT: buf[end] is always unused
// buf[end++] = elem;
// if (end == buf.size()) end = 0;
// if (first == end){ // Resize:
// vec<T> tmp((buf.size()*3 + 1) >> 1);
// //**/printf("queue alloc: %d elems (%.1f MB)\n", tmp.size(), tmp.size() * sizeof(T) / 1000000.0);
// int i = 0;
// for (int j = first; j < buf.size(); j++) tmp[i++] = buf[j];
// for (int j = 0 ; j < end ; j++) tmp[i++] = buf[j];
// first = 0;
// end = buf.size();
// tmp.moveTo(buf);
// }
// }
//};
//=================================================================================================
#endif

93
mtl/Sort.h Normal file
View file

@ -0,0 +1,93 @@
/******************************************************************************************[Sort.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Sort_h
#define Sort_h
#include "Vec.h"
//=================================================================================================
// Some sorting algorithms for vec's
template<class T>
struct LessThan_default {
bool operator () (T x, T y) { return x < y; }
};
template <class T, class LessThan>
void selectionSort(T* array, int size, LessThan lt)
{
int i, j, best_i;
T tmp;
for (i = 0; i < size-1; i++){
best_i = i;
for (j = i+1; j < size; j++){
if (lt(array[j], array[best_i]))
best_i = j;
}
tmp = array[i]; array[i] = array[best_i]; array[best_i] = tmp;
}
}
template <class T> static inline void selectionSort(T* array, int size) {
selectionSort(array, size, LessThan_default<T>()); }
template <class T, class LessThan>
void sort(T* array, int size, LessThan lt)
{
if (size <= 15)
selectionSort(array, size, lt);
else{
T pivot = array[size / 2];
T tmp;
int i = -1;
int j = size;
for(;;){
do i++; while(lt(array[i], pivot));
do j--; while(lt(pivot, array[j]));
if (i >= j) break;
tmp = array[i]; array[i] = array[j]; array[j] = tmp;
}
sort(array , i , lt);
sort(&array[i], size-i, lt);
}
}
template <class T> static inline void sort(T* array, int size) {
sort(array, size, LessThan_default<T>()); }
//=================================================================================================
// For 'vec's:
template <class T, class LessThan> void sort(vec<T>& v, LessThan lt) {
sort((T*)v, v.size(), lt); }
template <class T> void sort(vec<T>& v) {
sort(v, LessThan_default<T>()); }
//=================================================================================================
#endif

133
mtl/Vec.h Normal file
View file

@ -0,0 +1,133 @@
/*******************************************************************************************[Vec.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Vec_h
#define Vec_h
#include <cstdlib>
#include <cassert>
#include <new>
//=================================================================================================
// Automatically resizable arrays
//
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
template<class T>
class vec {
T* data;
int sz;
int cap;
void init(int size, const T& pad);
void grow(int min_cap);
// Don't allow copying (error prone):
vec<T>& operator = (vec<T>& other) { assert(0); return *this; }
vec (vec<T>& other) { assert(0); }
static inline int imin(int x, int y) {
int mask = (x-y) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
static inline int imax(int x, int y) {
int mask = (y-x) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
public:
// Types:
typedef int Key;
typedef T Datum;
// Constructors:
vec(void) : data(NULL) , sz(0) , cap(0) { }
vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); }
vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); }
vec(T* array, int size) : data(array), sz(size), cap(size) { } // (takes ownership of array -- will be deallocated with 'free()')
~vec(void) { clear(true); }
// Ownership of underlying array:
T* release (void) { T* ret = data; data = NULL; sz = 0; cap = 0; return ret; }
operator T* (void) { return data; } // (unsafe but convenient)
operator const T* (void) const { return data; }
// Size operations:
int size (void) const { return sz; }
void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); }
void shrink_(int nelems) { assert(nelems <= sz); sz -= nelems; }
void pop (void) { sz--, data[sz].~T(); }
void growTo (int size);
void growTo (int size, const T& pad);
void clear (bool dealloc = false);
void capacity (int size) { grow(size); }
// Stack interface:
#if 1
void push (void) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } new (&data[sz]) T(); sz++; }
//void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } new (&data[sz]) T(elem); sz++; }
void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } data[sz++] = elem; }
void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; }
#else
void push (void) { if (sz == cap) grow(sz+1); new (&data[sz]) T() ; sz++; }
void push (const T& elem) { if (sz == cap) grow(sz+1); new (&data[sz]) T(elem); sz++; }
#endif
const T& last (void) const { return data[sz-1]; }
T& last (void) { return data[sz-1]; }
// Vector interface:
const T& operator [] (int index) const { return data[index]; }
T& operator [] (int index) { return data[index]; }
// Duplicatation (preferred instead):
void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) new (&copy[i]) T(data[i]); }
void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; }
};
template<class T>
void vec<T>::grow(int min_cap) {
if (min_cap <= cap) return;
if (cap == 0) cap = (min_cap >= 2) ? min_cap : 2;
else do cap = (cap*3+1) >> 1; while (cap < min_cap);
data = (T*)realloc(data, cap * sizeof(T)); }
template<class T>
void vec<T>::growTo(int size, const T& pad) {
if (sz >= size) return;
grow(size);
for (int i = sz; i < size; i++) new (&data[i]) T(pad);
sz = size; }
template<class T>
void vec<T>::growTo(int size) {
if (sz >= size) return;
grow(size);
for (int i = sz; i < size; i++) new (&data[i]) T();
sz = size; }
template<class T>
void vec<T>::clear(bool dealloc) {
if (data != NULL){
for (int i = 0; i < sz; i++) data[i].~T();
sz = 0;
if (dealloc) free(data), data = NULL, cap = 0; } }
#endif

90
mtl/template.mk Normal file
View file

@ -0,0 +1,90 @@
##
## Template makefile for Standard, Profile, Debug, Release, and Release-static versions
##
## eg: "make rs" for a statically linked release version.
## "make d" for a debug version (no optimizations).
## "make" for the standard version (optimized, but with debug information and assertions active)
CSRCS ?= $(wildcard *.C)
CHDRS ?= $(wildcard *.h)
COBJS ?= $(addsuffix .o, $(basename $(CSRCS)))
PCOBJS = $(addsuffix p, $(COBJS))
DCOBJS = $(addsuffix d, $(COBJS))
RCOBJS = $(addsuffix r, $(COBJS))
EXEC ?= $(notdir $(shell pwd))
LIB ?= $(EXEC)
CXX ?= g++
CFLAGS ?= -Wall
LFLAGS ?= -Wall
COPTIMIZE ?= -O3
.PHONY : s p d r rs lib libd clean
s: $(EXEC)
p: $(EXEC)_profile
d: $(EXEC)_debug
r: $(EXEC)_release
rs: $(EXEC)_static
lib: lib$(LIB).a
libd: lib$(LIB)d.a
## Compile options
%.o: CFLAGS +=$(COPTIMIZE) -ggdb -D DEBUG
%.op: CFLAGS +=$(COPTIMIZE) -pg -ggdb -D NDEBUG
%.od: CFLAGS +=-O0 -ggdb -D DEBUG # -D INVARIANTS
%.or: CFLAGS +=$(COPTIMIZE) -D NDEBUG
## Link options
$(EXEC): LFLAGS := -ggdb $(LFLAGS)
$(EXEC)_profile: LFLAGS := -ggdb -pg $(LFLAGS)
$(EXEC)_debug: LFLAGS := -ggdb $(LFLAGS)
$(EXEC)_release: LFLAGS := $(LFLAGS)
$(EXEC)_static: LFLAGS := --static $(LFLAGS)
## Dependencies
$(EXEC): $(COBJS)
$(EXEC)_profile: $(PCOBJS)
$(EXEC)_debug: $(DCOBJS)
$(EXEC)_release: $(RCOBJS)
$(EXEC)_static: $(RCOBJS)
lib$(LIB).a: $(filter-out Main.or, $(RCOBJS))
lib$(LIB)d.a: $(filter-out Main.od, $(DCOBJS))
## Build rule
%.o %.op %.od %.or: %.C
@echo Compiling: "$@ ( $< )"
@$(CXX) $(CFLAGS) -c -o $@ $<
## Linking rules (standard/profile/debug/release)
$(EXEC) $(EXEC)_profile $(EXEC)_debug $(EXEC)_release $(EXEC)_static:
@echo Linking: "$@ ( $^ )"
@$(CXX) $^ $(LFLAGS) -o $@
## Library rule
lib$(LIB).a lib$(LIB)d.a:
@echo Library: "$@ ( $^ )"
@rm -f $@
@ar cq $@ $^
## Clean rule
clean:
@rm -f $(EXEC) $(EXEC)_profile $(EXEC)_debug $(EXEC)_release $(EXEC)_static \
$(COBJS) $(PCOBJS) $(DCOBJS) $(RCOBJS) *.core depend.mak lib$(LIB).a lib$(LIB)d.a
## Make dependencies
depend.mk: $(CSRCS) $(CHDRS)
@echo Making dependencies ...
@$(CXX) $(CFLAGS) -MM $(CSRCS) > depend.mk
@cp depend.mk /tmp/depend.mk.tmp
@sed "s/o:/op:/" /tmp/depend.mk.tmp >> depend.mk
@sed "s/o:/od:/" /tmp/depend.mk.tmp >> depend.mk
@sed "s/o:/or:/" /tmp/depend.mk.tmp >> depend.mk
@rm /tmp/depend.mk.tmp
-include depend.mk

415
simp/Main.C Normal file
View file

@ -0,0 +1,415 @@
/******************************************************************************************[Main.C]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include <ctime>
#include <cstring>
#include <stdint.h>
#include <errno.h>
#include <signal.h>
#include <zlib.h>
#include "SimpSolver.h"
/*************************************************************************************/
#ifdef _MSC_VER
#include <ctime>
static inline double cpuTime(void) {
return (double)clock() / CLOCKS_PER_SEC; }
#else
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
static inline double cpuTime(void) {
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
#endif
#if defined(__linux__)
static inline int memReadStat(int field)
{
char name[256];
pid_t pid = getpid();
sprintf(name, "/proc/%d/statm", pid);
FILE* in = fopen(name, "rb");
if (in == NULL) return 0;
int value;
for (; field >= 0; field--)
fscanf(in, "%d", &value);
fclose(in);
return value;
}
static inline uint64_t memUsed() { return (uint64_t)memReadStat(0) * (uint64_t)getpagesize(); }
#elif defined(__FreeBSD__)
static inline uint64_t memUsed(void) {
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
return ru.ru_maxrss*1024; }
#else
static inline uint64_t memUsed() { return 0; }
#endif
#if defined(__linux__)
#include <fpu_control.h>
#endif
//=================================================================================================
// DIMACS Parser:
#define CHUNK_LIMIT 1048576
class StreamBuffer {
gzFile in;
char buf[CHUNK_LIMIT];
int pos;
int size;
void assureLookahead() {
if (pos >= size) {
pos = 0;
size = gzread(in, buf, sizeof(buf)); } }
public:
StreamBuffer(gzFile i) : in(i), pos(0), size(0) {
assureLookahead(); }
int operator * () { return (pos >= size) ? EOF : buf[pos]; }
void operator ++ () { pos++; assureLookahead(); }
};
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
template<class B>
static void skipWhitespace(B& in) {
while ((*in >= 9 && *in <= 13) || *in == 32)
++in; }
template<class B>
static void skipLine(B& in) {
for (;;){
if (*in == EOF || *in == '\0') return;
if (*in == '\n') { ++in; return; }
++in; } }
template<class B>
static int parseInt(B& in) {
int val = 0;
bool neg = false;
skipWhitespace(in);
if (*in == '-') neg = true, ++in;
else if (*in == '+') ++in;
if (*in < '0' || *in > '9') reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
while (*in >= '0' && *in <= '9')
val = val*10 + (*in - '0'),
++in;
return neg ? -val : val; }
template<class B>
static void readClause(B& in, SimpSolver& S, vec<Lit>& lits) {
int parsed_lit, var;
lits.clear();
for (;;){
parsed_lit = parseInt(in);
if (parsed_lit == 0) break;
var = abs(parsed_lit)-1;
while (var >= S.nVars()) S.newVar();
lits.push( (parsed_lit > 0) ? Lit(var) : ~Lit(var) );
}
}
template<class B>
static bool match(B& in, char* str) {
for (; *str != 0; ++str, ++in)
if (*str != *in)
return false;
return true;
}
template<class B>
static void parse_DIMACS_main(B& in, SimpSolver& S) {
vec<Lit> lits;
for (;;){
skipWhitespace(in);
if (*in == EOF) break;
else if (*in == 'p'){
if (match(in, "p cnf")){
int vars = parseInt(in);
int clauses = parseInt(in);
reportf("| Number of variables: %-12d |\n", vars);
reportf("| Number of clauses: %-12d |\n", clauses);
// SATRACE'06 hack
if (clauses > 4000000)
S.eliminate(true);
}else{
reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
}
} else if (*in == 'c' || *in == 'p')
skipLine(in);
else{
readClause(in, S, lits);
S.addClause(lits); }
}
}
// Inserts problem into solver.
//
static void parse_DIMACS(gzFile input_stream, SimpSolver& S) {
StreamBuffer in(input_stream);
parse_DIMACS_main(in, S); }
//=================================================================================================
void printStats(Solver& S)
{
double cpu_time = cpuTime();
uint64_t mem_used = memUsed();
reportf("restarts : %lld\n", S.starts);
reportf("conflicts : %-12lld (%.0f /sec)\n", S.conflicts , S.conflicts /cpu_time);
reportf("decisions : %-12lld (%4.2f %% random) (%.0f /sec)\n", S.decisions, (float)S.rnd_decisions*100 / (float)S.decisions, S.decisions /cpu_time);
reportf("propagations : %-12lld (%.0f /sec)\n", S.propagations, S.propagations/cpu_time);
reportf("conflict literals : %-12lld (%4.2f %% deleted)\n", S.tot_literals, (S.max_literals - S.tot_literals)*100 / (double)S.max_literals);
if (mem_used != 0) reportf("Memory used : %.2f MB\n", mem_used / 1048576.0);
reportf("CPU time : %g s\n", cpu_time);
}
SimpSolver* solver;
static void SIGINT_handler(int signum) {
reportf("\n"); reportf("*** INTERRUPTED ***\n");
printStats(*solver);
reportf("\n"); reportf("*** INTERRUPTED ***\n");
exit(1); }
//=================================================================================================
// Main:
void printUsage(char** argv)
{
reportf("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n\n", argv[0]);
reportf("OPTIONS:\n\n");
reportf(" -pre = {none,once}\n");
reportf(" -asymm\n");
reportf(" -rcheck\n");
reportf(" -grow = <num> [ >0 ]\n");
reportf(" -polarity-mode = {true,false,rnd}\n");
reportf(" -decay = <num> [ 0 - 1 ]\n");
reportf(" -rnd-freq = <num> [ 0 - 1 ]\n");
reportf(" -dimacs = <output-file>\n");
reportf(" -verbosity = {0,1,2}\n");
reportf("\n");
}
typedef enum { pre_none, pre_once, pre_repeat } preprocessMode;
const char* hasPrefix(const char* str, const char* prefix)
{
int len = strlen(prefix);
if (strncmp(str, prefix, len) == 0)
return str + len;
else
return NULL;
}
int main(int argc, char** argv)
{
reportf("This is MiniSat 2.0 beta\n");
#if defined(__linux__)
fpu_control_t oldcw, newcw;
_FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
reportf("WARNING: for repeatability, setting FPU to use double precision\n");
#endif
preprocessMode pre = pre_once;
const char* dimacs = NULL;
const char* freeze = NULL;
SimpSolver S;
S.verbosity = 1;
// This just grew and grew, and I didn't have time to do sensible argument parsing yet :)
//
int i, j;
const char* value;
for (i = j = 0; i < argc; i++){
if ((value = hasPrefix(argv[i], "-polarity-mode="))){
if (strcmp(value, "true") == 0)
S.polarity_mode = Solver::polarity_true;
else if (strcmp(value, "false") == 0)
S.polarity_mode = Solver::polarity_false;
else if (strcmp(value, "rnd") == 0)
S.polarity_mode = Solver::polarity_rnd;
else{
reportf("ERROR! unknown polarity-mode %s\n", value);
exit(0); }
}else if ((value = hasPrefix(argv[i], "-rnd-freq="))){
double rnd;
if (sscanf(value, "%lf", &rnd) <= 0 || rnd < 0 || rnd > 1){
reportf("ERROR! illegal rnd-freq constant %s\n", value);
exit(0); }
S.random_var_freq = rnd;
}else if ((value = hasPrefix(argv[i], "-decay="))){
double decay;
if (sscanf(value, "%lf", &decay) <= 0 || decay <= 0 || decay > 1){
reportf("ERROR! illegal decay constant %s\n", value);
exit(0); }
S.var_decay = 1 / decay;
}else if ((value = hasPrefix(argv[i], "-verbosity="))){
int verbosity = (int)strtol(value, NULL, 10);
if (verbosity == 0 && errno == EINVAL){
reportf("ERROR! illegal verbosity level %s\n", value);
exit(0); }
S.verbosity = verbosity;
}else if ((value = hasPrefix(argv[i], "-pre="))){
if (strcmp(value, "none") == 0)
pre = pre_none;
else if (strcmp(value, "once") == 0)
pre = pre_once;
else if (strcmp(value, "repeat") == 0){
pre = pre_repeat;
reportf("ERROR! preprocessing mode \"repeat\" is not supported at the moment.\n");
exit(0);
}else{
reportf("ERROR! unknown preprocessing mode %s\n", value);
exit(0); }
}else if (strcmp(argv[i], "-asymm") == 0){
S.asymm_mode = true;
}else if (strcmp(argv[i], "-rcheck") == 0){
S.redundancy_check = true;
}else if ((value = hasPrefix(argv[i], "-grow="))){
int grow = (int)strtol(value, NULL, 10);
if (grow == 0 && errno == EINVAL){
reportf("ERROR! illegal grow constant %s\n", &argv[i][6]);
exit(0); }
S.grow = grow;
}else if ((value = hasPrefix(argv[i], "-dimacs="))){
dimacs = value;
}else if ((value = hasPrefix(argv[i], "-freeze="))){
freeze = value;
}else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "-help") == 0){
printUsage(argv);
exit(0);
}else if (strncmp(argv[i], "-", 1) == 0){
reportf("ERROR! unknown flag %s\n", argv[i]);
exit(0);
}else
argv[j++] = argv[i];
}
argc = j;
double cpu_time = cpuTime();
if (pre == pre_none)
S.eliminate(true);
solver = &S;
signal(SIGINT,SIGINT_handler);
signal(SIGHUP,SIGINT_handler);
if (argc == 1)
reportf("Reading from standard input... Use '-h' or '--help' for help.\n");
gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb");
if (in == NULL)
reportf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1);
reportf("============================[ Problem Statistics ]=============================\n");
reportf("| |\n");
parse_DIMACS(in, S);
gzclose(in);
FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL;
double parse_time = cpuTime() - cpu_time;
reportf("| Parsing time: %-12.2f s |\n", parse_time);
/*HACK: Freeze variables*/
if (freeze != NULL && pre != pre_none){
int count = 0;
FILE* in = fopen(freeze, "rb");
for(;;){
Var x;
fscanf(in, "%d", &x);
if (x == 0) break;
x--;
/**/assert(S.n_occ[toInt(Lit(x))] + S.n_occ[toInt(~Lit(x))] != 0);
/**/assert(S.value(x) == l_Undef);
S.setFrozen(x, true);
count++;
}
fclose(in);
reportf("| Frozen vars : %-12.0f |\n", (double)count);
}
/*END*/
if (!S.simplify()){
reportf("Solved by unit propagation\n");
if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res);
printf("UNSATISFIABLE\n");
exit(20);
}
if (dimacs){
if (pre != pre_none)
S.eliminate(true);
reportf("==============================[ Writing DIMACS ]===============================\n");
S.toDimacs(dimacs);
printStats(S);
exit(0);
}else{
bool ret = S.solve(true, true);
printStats(S);
reportf("\n");
printf(ret ? "SATISFIABLE\n" : "UNSATISFIABLE\n");
if (res != NULL){
if (ret){
fprintf(res, "SAT\n");
for (int i = 0; i < S.nVars(); i++)
if (S.model[i] != l_Undef)
fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1);
fprintf(res, " 0\n");
}else
fprintf(res, "UNSAT\n");
fclose(res);
}
#ifdef NDEBUG
exit(ret ? 10 : 20); // (faster than "return", which will invoke the destructor for 'Solver')
#endif
}
}

11
simp/Makefile Normal file
View file

@ -0,0 +1,11 @@
MTL = ../mtl
CORE = ../core
CHDRS = $(wildcard *.h) $(wildcard $(MTL)/*.h)
EXEC = minisat
CFLAGS = -I$(MTL) -I$(CORE) -Wall -ffloat-store
LFLAGS = -lz
CSRCS = $(wildcard *.C)
COBJS = $(addsuffix .o, $(basename $(CSRCS))) $(CORE)/Solver.o
include ../mtl/template.mk

700
simp/SimpSolver.C Normal file
View file

@ -0,0 +1,700 @@
/************************************************************************************[SimpSolver.C]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include "Sort.h"
#include "SimpSolver.h"
//=================================================================================================
// Constructor/Destructor:
SimpSolver::SimpSolver() :
grow (0)
, asymm_mode (false)
, redundancy_check (false)
, merges (0)
, asymm_lits (0)
, remembered_clauses (0)
, elimorder (1)
, use_simplification (true)
, elim_heap (ElimLt(n_occ))
, bwdsub_assigns (0)
{
vec<Lit> dummy(1,lit_Undef);
bwdsub_tmpunit = Clause_new(dummy);
remove_satisfied = false;
}
SimpSolver::~SimpSolver()
{
free(bwdsub_tmpunit);
// NOTE: elimtable.size() might be lower than nVars() at the moment
for (int i = 0; i < elimtable.size(); i++)
for (int j = 0; j < elimtable[i].eliminated.size(); j++)
free(elimtable[i].eliminated[j]);
}
Var SimpSolver::newVar(bool sign, bool dvar) {
Var v = Solver::newVar(sign, dvar);
if (use_simplification){
n_occ .push(0);
n_occ .push(0);
occurs .push();
frozen .push((char)false);
touched .push(0);
elim_heap.insert(v);
elimtable.push();
}
return v; }
bool SimpSolver::solve(const vec<Lit>& assumps, bool do_simp, bool turn_off_simp) {
vec<Var> extra_frozen;
bool result = true;
do_simp &= use_simplification;
if (do_simp){
// Assumptions must be temporarily frozen to run variable elimination:
for (int i = 0; i < assumps.size(); i++){
Var v = var(assumps[i]);
// If an assumption has been eliminated, remember it.
if (isEliminated(v))
remember(v);
if (!frozen[v]){
// Freeze and store.
setFrozen(v, true);
extra_frozen.push(v);
} }
result = eliminate(turn_off_simp);
}
if (result)
result = Solver::solve(assumps);
if (result) {
extendModel();
#ifndef NDEBUG
verifyModel();
#endif
}
if (do_simp)
// Unfreeze the assumptions that were frozen:
for (int i = 0; i < extra_frozen.size(); i++)
setFrozen(extra_frozen[i], false);
return result;
}
bool SimpSolver::addClause(vec<Lit>& ps)
{
for (int i = 0; i < ps.size(); i++)
if (isEliminated(var(ps[i])))
remember(var(ps[i]));
int nclauses = clauses.size();
if (redundancy_check && implied(ps))
return true;
if (!Solver::addClause(ps))
return false;
if (use_simplification && clauses.size() == nclauses + 1){
Clause& c = *clauses.last();
subsumption_queue.insert(&c);
for (int i = 0; i < c.size(); i++){
assert(occurs.size() > var(c[i]));
assert(!find(occurs[var(c[i])], &c));
occurs[var(c[i])].push(&c);
n_occ[toInt(c[i])]++;
touched[var(c[i])] = 1;
assert(elimtable[var(c[i])].order == 0);
if (elim_heap.inHeap(var(c[i])))
elim_heap.increase_(var(c[i]));
}
}
return true;
}
void SimpSolver::removeClause(Clause& c)
{
assert(!c.learnt());
if (use_simplification)
for (int i = 0; i < c.size(); i++){
n_occ[toInt(c[i])]--;
updateElimHeap(var(c[i]));
}
detachClause(c);
c.mark(1);
}
bool SimpSolver::strengthenClause(Clause& c, Lit l)
{
assert(decisionLevel() == 0);
assert(c.mark() == 0);
assert(!c.learnt());
assert(find(watches[toInt(~c[0])], &c));
assert(find(watches[toInt(~c[1])], &c));
// FIX: this is too inefficient but would be nice to have (properly implemented)
// if (!find(subsumption_queue, &c))
subsumption_queue.insert(&c);
// If l is watched, delete it from watcher list and watch a new literal
if (c[0] == l || c[1] == l){
Lit other = c[0] == l ? c[1] : c[0];
if (c.size() == 2){
removeClause(c);
c.strengthen(l);
}else{
c.strengthen(l);
remove(watches[toInt(~l)], &c);
// Add a watch for the correct literal
watches[toInt(~(c[1] == other ? c[0] : c[1]))].push(&c);
// !! this version assumes that remove does not change the order !!
//watches[toInt(~c[1])].push(&c);
clauses_literals -= 1;
}
}
else{
c.strengthen(l);
clauses_literals -= 1;
}
// if subsumption-indexing is active perform the necessary updates
if (use_simplification){
remove(occurs[var(l)], &c);
n_occ[toInt(l)]--;
updateElimHeap(var(l));
}
return c.size() == 1 ? enqueue(c[0]) && propagate() == NULL : true;
}
// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause)
{
merges++;
out_clause.clear();
bool ps_smallest = _ps.size() < _qs.size();
const Clause& ps = ps_smallest ? _qs : _ps;
const Clause& qs = ps_smallest ? _ps : _qs;
for (int i = 0; i < qs.size(); i++){
if (var(qs[i]) != v){
for (int j = 0; j < ps.size(); j++)
if (var(ps[j]) == var(qs[i]))
if (ps[j] == ~qs[i])
return false;
else
goto next;
out_clause.push(qs[i]);
}
next:;
}
for (int i = 0; i < ps.size(); i++)
if (var(ps[i]) != v)
out_clause.push(ps[i]);
return true;
}
// Returns FALSE if clause is always satisfied.
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v)
{
merges++;
bool ps_smallest = _ps.size() < _qs.size();
const Clause& ps = ps_smallest ? _qs : _ps;
const Clause& qs = ps_smallest ? _ps : _qs;
const Lit* __ps = (const Lit*)ps;
const Lit* __qs = (const Lit*)qs;
for (int i = 0; i < qs.size(); i++){
if (var(__qs[i]) != v){
for (int j = 0; j < ps.size(); j++)
if (var(__ps[j]) == var(__qs[i]))
if (__ps[j] == ~__qs[i])
return false;
else
goto next;
}
next:;
}
return true;
}
void SimpSolver::gatherTouchedClauses()
{
//fprintf(stderr, "Gathering clauses for backwards subsumption\n");
int ntouched = 0;
for (int i = 0; i < touched.size(); i++)
if (touched[i]){
const vec<Clause*>& cs = getOccurs(i);
ntouched++;
for (int j = 0; j < cs.size(); j++)
if (cs[j]->mark() == 0){
subsumption_queue.insert(cs[j]);
cs[j]->mark(2);
}
touched[i] = 0;
}
//fprintf(stderr, "Touched variables %d of %d yields %d clauses to check\n", ntouched, touched.size(), clauses.size());
for (int i = 0; i < subsumption_queue.size(); i++)
subsumption_queue[i]->mark(0);
}
bool SimpSolver::implied(const vec<Lit>& c)
{
assert(decisionLevel() == 0);
trail_lim.push(trail.size());
for (int i = 0; i < c.size(); i++)
if (value(c[i]) == l_True){
cancelUntil(0);
return false;
}else if (value(c[i]) != l_False){
assert(value(c[i]) == l_Undef);
uncheckedEnqueue(~c[i]);
}
bool result = propagate() != NULL;
cancelUntil(0);
return result;
}
// Backward subsumption + backward subsumption resolution
bool SimpSolver::backwardSubsumptionCheck(bool verbose)
{
int cnt = 0;
int subsumed = 0;
int deleted_literals = 0;
assert(decisionLevel() == 0);
while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){
// Check top-level assignments by creating a dummy clause and placing it in the queue:
if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){
Lit l = trail[bwdsub_assigns++];
(*bwdsub_tmpunit)[0] = l;
bwdsub_tmpunit->calcAbstraction();
assert(bwdsub_tmpunit->mark() == 0);
subsumption_queue.insert(bwdsub_tmpunit); }
Clause& c = *subsumption_queue.peek(); subsumption_queue.pop();
if (c.mark()) continue;
if (verbose && verbosity >= 2 && cnt++ % 1000 == 0)
reportf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals);
assert(c.size() > 1 || value(c[0]) == l_True); // Unit-clauses should have been propagated before this point.
// Find best variable to scan:
Var best = var(c[0]);
for (int i = 1; i < c.size(); i++)
if (occurs[var(c[i])].size() < occurs[best].size())
best = var(c[i]);
// Search all candidates:
vec<Clause*>& _cs = getOccurs(best);
Clause** cs = (Clause**)_cs;
for (int j = 0; j < _cs.size(); j++)
if (c.mark())
break;
else if (!cs[j]->mark() && cs[j] != &c){
Lit l = c.subsumes(*cs[j]);
if (l == lit_Undef)
subsumed++, removeClause(*cs[j]);
else if (l != lit_Error){
deleted_literals++;
if (!strengthenClause(*cs[j], ~l))
return false;
// Did current candidate get deleted from cs? Then check candidate at index j again:
if (var(l) == best)
j--;
}
}
}
return true;
}
bool SimpSolver::asymm(Var v, Clause& c)
{
assert(decisionLevel() == 0);
if (c.mark() || satisfied(c)) return true;
trail_lim.push(trail.size());
Lit l = lit_Undef;
for (int i = 0; i < c.size(); i++)
if (var(c[i]) != v && value(c[i]) != l_False)
uncheckedEnqueue(~c[i]);
else
l = c[i];
if (propagate() != NULL){
cancelUntil(0);
asymm_lits++;
if (!strengthenClause(c, l))
return false;
}else
cancelUntil(0);
return true;
}
bool SimpSolver::asymmVar(Var v)
{
assert(!frozen[v]);
assert(use_simplification);
vec<Clause*> pos, neg;
const vec<Clause*>& cls = getOccurs(v);
if (value(v) != l_Undef || cls.size() == 0)
return true;
for (int i = 0; i < cls.size(); i++)
if (!asymm(v, *cls[i]))
return false;
return backwardSubsumptionCheck();
}
void SimpSolver::verifyModel()
{
bool failed = false;
int cnt = 0;
// NOTE: elimtable.size() might be lower than nVars() at the moment
for (int i = 0; i < elimtable.size(); i++)
if (elimtable[i].order > 0)
for (int j = 0; j < elimtable[i].eliminated.size(); j++){
cnt++;
Clause& c = *elimtable[i].eliminated[j];
for (int k = 0; k < c.size(); k++)
if (modelValue(c[k]) == l_True)
goto next;
reportf("unsatisfied clause: ");
printClause(*elimtable[i].eliminated[j]);
reportf("\n");
failed = true;
next:;
}
assert(!failed);
reportf("Verified %d eliminated clauses.\n", cnt);
}
bool SimpSolver::eliminateVar(Var v, bool fail)
{
if (!fail && asymm_mode && !asymmVar(v)) return false;
const vec<Clause*>& cls = getOccurs(v);
// if (value(v) != l_Undef || cls.size() == 0) return true;
if (value(v) != l_Undef) return true;
// Split the occurrences into positive and negative:
vec<Clause*> pos, neg;
for (int i = 0; i < cls.size(); i++)
(find(*cls[i], Lit(v)) ? pos : neg).push(cls[i]);
// Check if number of clauses decreases:
int cnt = 0;
for (int i = 0; i < pos.size(); i++)
for (int j = 0; j < neg.size(); j++)
if (merge(*pos[i], *neg[j], v) && ++cnt > cls.size() + grow)
return true;
// Delete and store old clauses:
setDecisionVar(v, false);
elimtable[v].order = elimorder++;
assert(elimtable[v].eliminated.size() == 0);
for (int i = 0; i < cls.size(); i++){
elimtable[v].eliminated.push(Clause_new(*cls[i]));
removeClause(*cls[i]); }
// Produce clauses in cross product:
int top = clauses.size();
vec<Lit> resolvent;
for (int i = 0; i < pos.size(); i++)
for (int j = 0; j < neg.size(); j++)
if (merge(*pos[i], *neg[j], v, resolvent) && !addClause(resolvent))
return false;
// DEBUG: For checking that a clause set is saturated with respect to variable elimination.
// If the clause set is expected to be saturated at this point, this constitutes an
// error.
if (fail){
reportf("eliminated var %d, %d <= %d\n", v+1, cnt, cls.size());
reportf("previous clauses:\n");
for (int i = 0; i < cls.size(); i++){
printClause(*cls[i]); reportf("\n"); }
reportf("new clauses:\n");
for (int i = top; i < clauses.size(); i++){
printClause(*clauses[i]); reportf("\n"); }
assert(0); }
return backwardSubsumptionCheck();
}
void SimpSolver::remember(Var v)
{
assert(decisionLevel() == 0);
assert(isEliminated(v));
vec<Lit> clause;
// Re-activate variable:
elimtable[v].order = 0;
setDecisionVar(v, true); // Not good if the variable wasn't a decision variable before. Not sure how to fix this right now.
if (use_simplification)
updateElimHeap(v);
// Reintroduce all old clauses which may implicitly remember other clauses:
for (int i = 0; i < elimtable[v].eliminated.size(); i++){
Clause& c = *elimtable[v].eliminated[i];
clause.clear();
for (int j = 0; j < c.size(); j++)
clause.push(c[j]);
remembered_clauses++;
check(addClause(clause));
free(&c);
}
elimtable[v].eliminated.clear();
}
void SimpSolver::extendModel()
{
vec<Var> vs;
// NOTE: elimtable.size() might be lower than nVars() at the moment
for (int v = 0; v < elimtable.size(); v++)
if (elimtable[v].order > 0)
vs.push(v);
sort(vs, ElimOrderLt(elimtable));
for (int i = 0; i < vs.size(); i++){
Var v = vs[i];
Lit l = lit_Undef;
for (int j = 0; j < elimtable[v].eliminated.size(); j++){
Clause& c = *elimtable[v].eliminated[j];
for (int k = 0; k < c.size(); k++)
if (var(c[k]) == v)
l = c[k];
else if (modelValue(c[k]) != l_False)
goto next;
assert(l != lit_Undef);
model[v] = lbool(!sign(l));
break;
next:;
}
if (model[v] == l_Undef)
model[v] = l_True;
}
}
bool SimpSolver::eliminate(bool turn_off_elim)
{
if (!ok || !use_simplification)
return ok;
// Main simplification loop:
//assert(subsumption_queue.size() == 0);
//gatherTouchedClauses();
while (subsumption_queue.size() > 0 || elim_heap.size() > 0){
//fprintf(stderr, "subsumption phase: (%d)\n", subsumption_queue.size());
if (!backwardSubsumptionCheck(true))
return false;
//fprintf(stderr, "elimination phase:\n (%d)", elim_heap.size());
for (int cnt = 0; !elim_heap.empty(); cnt++){
Var elim = elim_heap.removeMin();
if (verbosity >= 2 && cnt % 100 == 0)
reportf("elimination left: %10d\r", elim_heap.size());
if (!frozen[elim] && !eliminateVar(elim))
return false;
}
assert(subsumption_queue.size() == 0);
gatherTouchedClauses();
}
// Cleanup:
cleanUpClauses();
order_heap.filter(VarFilter(*this));
#ifdef INVARIANTS
// Check that no more subsumption is possible:
reportf("Checking that no more subsumption is possible\n");
for (int i = 0; i < clauses.size(); i++){
if (i % 1000 == 0)
reportf("left %10d\r", clauses.size() - i);
assert(clauses[i]->mark() == 0);
for (int j = 0; j < i; j++)
assert(clauses[i]->subsumes(*clauses[j]) == lit_Error);
}
reportf("done.\n");
// Check that no more elimination is possible:
reportf("Checking that no more elimination is possible\n");
for (int i = 0; i < nVars(); i++)
if (!frozen[i]) eliminateVar(i, true);
reportf("done.\n");
checkLiteralCount();
#endif
// If no more simplification is needed, free all simplification-related data structures:
if (turn_off_elim){
use_simplification = false;
touched.clear(true);
occurs.clear(true);
n_occ.clear(true);
subsumption_queue.clear(true);
elim_heap.clear(true);
remove_satisfied = true;
}
return true;
}
void SimpSolver::cleanUpClauses()
{
int i , j;
vec<Var> dirty;
for (i = 0; i < clauses.size(); i++)
if (clauses[i]->mark() == 1){
Clause& c = *clauses[i];
for (int k = 0; k < c.size(); k++)
if (!seen[var(c[k])]){
seen[var(c[k])] = 1;
dirty.push(var(c[k]));
} }
for (i = 0; i < dirty.size(); i++){
cleanOcc(dirty[i]);
seen[dirty[i]] = 0; }
for (i = j = 0; i < clauses.size(); i++)
if (clauses[i]->mark() == 1)
free(clauses[i]);
else
clauses[j++] = clauses[i];
clauses.shrink(i - j);
}
//=================================================================================================
// Convert to DIMACS:
void SimpSolver::toDimacs(FILE* f, Clause& c)
{
if (satisfied(c)) return;
for (int i = 0; i < c.size(); i++)
if (value(c[i]) != l_False)
fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", var(c[i])+1);
fprintf(f, "0\n");
}
void SimpSolver::toDimacs(const char* file)
{
assert(decisionLevel() == 0);
FILE* f = fopen(file, "wr");
if (f != NULL){
// Cannot use removeClauses here because it is not safe
// to deallocate them at this point. Could be improved.
int cnt = 0;
for (int i = 0; i < clauses.size(); i++)
if (!satisfied(*clauses[i]))
cnt++;
fprintf(f, "p cnf %d %d\n", nVars(), cnt);
for (int i = 0; i < clauses.size(); i++)
toDimacs(f, *clauses[i]);
fprintf(stderr, "Wrote %d clauses...\n", clauses.size());
}else
fprintf(stderr, "could not open file %s\n", file);
}

161
simp/SimpSolver.h Normal file
View file

@ -0,0 +1,161 @@
/************************************************************************************[SimpSolver.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef SimpSolver_h
#define SimpSolver_h
#include <cstdio>
#include "Queue.h"
#include "Solver.h"
class SimpSolver : public Solver {
public:
// Constructor/Destructor:
//
SimpSolver();
~SimpSolver();
// Problem specification:
//
Var newVar (bool polarity = true, bool dvar = true);
bool addClause (vec<Lit>& ps);
// Variable mode:
//
void setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated.
// Solving:
//
bool solve (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
bool solve (bool do_simp = true, bool turn_off_simp = false);
bool eliminate (bool turn_off_elim = false); // Perform variable elimination based simplification.
// Generate a (possibly simplified) DIMACS file:
//
void toDimacs (const char* file);
// Mode of operation:
//
int grow; // Allow a variable elimination step to grow by a number of clauses (default to zero).
bool asymm_mode; // Shrink clauses by asymmetric branching.
bool redundancy_check; // Check if a clause is already implied. Prett costly, and subsumes subsumptions :)
// Statistics:
//
int merges;
int asymm_lits;
int remembered_clauses;
// protected:
public:
// Helper structures:
//
struct ElimData {
int order; // 0 means not eliminated, >0 gives an index in the elimination order
vec<Clause*> eliminated;
ElimData() : order(0) {} };
struct ElimOrderLt {
const vec<ElimData>& elimtable;
ElimOrderLt(const vec<ElimData>& et) : elimtable(et) {}
bool operator()(Var x, Var y) { return elimtable[x].order > elimtable[y].order; } };
struct ElimLt {
const vec<int>& n_occ;
ElimLt(const vec<int>& no) : n_occ(no) {}
int cost (Var x) const { return n_occ[toInt(Lit(x))] * n_occ[toInt(~Lit(x))]; }
bool operator()(Var x, Var y) const { return cost(x) < cost(y); } };
// Solver state:
//
int elimorder;
bool use_simplification;
vec<ElimData> elimtable;
vec<char> touched;
vec<vec<Clause*> > occurs;
vec<int> n_occ;
Heap<ElimLt> elim_heap;
Queue<Clause*> subsumption_queue;
vec<char> frozen;
int bwdsub_assigns;
// Temporaries:
//
Clause* bwdsub_tmpunit;
// Main internal methods:
//
bool asymm (Var v, Clause& c);
bool asymmVar (Var v);
void updateElimHeap (Var v);
void cleanOcc (Var v);
vec<Clause*>& getOccurs (Var x);
void gatherTouchedClauses ();
bool merge (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
bool merge (const Clause& _ps, const Clause& _qs, Var v);
bool backwardSubsumptionCheck (bool verbose = false);
bool eliminateVar (Var v, bool fail = false);
void remember (Var v);
void extendModel ();
void verifyModel ();
void removeClause (Clause& c);
bool strengthenClause (Clause& c, Lit l);
void cleanUpClauses ();
bool implied (const vec<Lit>& c);
void toDimacs (FILE* f, Clause& c);
bool isEliminated (Var v) const;
};
//=================================================================================================
// Implementation of inline methods:
inline void SimpSolver::updateElimHeap(Var v) {
if (elimtable[v].order == 0)
elim_heap.update(v); }
inline void SimpSolver::cleanOcc(Var v) {
assert(use_simplification);
Clause **begin = (Clause**)occurs[v];
Clause **end = begin + occurs[v].size();
Clause **i, **j;
for (i = begin, j = end; i < j; i++)
if ((*i)->mark() == 1){
*i = *(--j);
i--;
}
//occurs[v].shrink_(end - j); // This seems slower. Why?!
occurs[v].shrink(end - j);
}
inline vec<Clause*>& SimpSolver::getOccurs(Var x) {
cleanOcc(x); return occurs[x]; }
inline bool SimpSolver::isEliminated (Var v) const { return v < elimtable.size() && elimtable[v].order != 0; }
inline void SimpSolver::setFrozen (Var v, bool b) { frozen[v] = (char)b; if (b) { updateElimHeap(v); } }
inline bool SimpSolver::solve (bool do_simp, bool turn_off_simp) { vec<Lit> tmp; return solve(tmp, do_simp, turn_off_simp); }
//=================================================================================================
#endif