242 lines
8.6 KiB
C++
242 lines
8.6 KiB
C++
|
|
/*************************************************************************
|
|
*
|
|
* This file is part of the ACT library
|
|
*
|
|
* Copyright (c) 2024 Fabian Posch
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
#include <cstdio>
|
|
#include "task_interface.hpp"
|
|
|
|
TaskInterface::TaskInterface(size_t buffer_size) {
|
|
this->buffer_size = buffer_size;
|
|
this->running_.store(true, std::memory_order_relaxed);
|
|
this->immediate_stop.store(false, std::memory_order_relaxed);
|
|
}
|
|
|
|
TaskInterface::~TaskInterface() {
|
|
bool empty = false;
|
|
while (!empty) this->pop_fresh(empty);
|
|
empty = false;
|
|
while (!empty) this->pop_finished(empty);
|
|
}
|
|
|
|
void TaskInterface::push_fresh(std::unique_ptr<InputType> task) {
|
|
|
|
// lock the queue and insert into it
|
|
std::lock_guard<std::mutex> lock(this->fresh_queue_mutex);
|
|
this->fresh_queue.push(std::move(task));
|
|
|
|
// we put one task in there so we notify one worker thread
|
|
this->fresh_queue_empty_condition.notify_one();
|
|
}
|
|
|
|
bool TaskInterface::fresh_queue_empty() {
|
|
std::lock_guard<std::mutex> lock(this->fresh_queue_mutex);
|
|
return this->fresh_queue.empty();
|
|
}
|
|
|
|
bool TaskInterface::finished_queue_empty() {
|
|
std::lock_guard<std::mutex> lock(this->finished_queue_mutex);
|
|
return this->finished_queue.empty();
|
|
}
|
|
|
|
std::unique_ptr<InputType> TaskInterface::pop_fresh(bool& empty) {
|
|
|
|
// we first need exclusive access to the queue
|
|
std::lock_guard<std::mutex> lock (this->fresh_queue_mutex);
|
|
|
|
// we have to make sure the queue wasn't emptied since the last empty call was made
|
|
// or at least inform the calling thread that the queue is currently empty
|
|
std::unique_ptr<InputType> task;
|
|
|
|
if (!(empty = this->fresh_queue.empty())) {
|
|
task = std::move(this->fresh_queue.front());
|
|
|
|
// if the task needs to be simulated by multiple workers, don't remove it from the queue
|
|
if (!task->parallelizable()) {
|
|
this->fresh_queue.pop();
|
|
this->fresh_queue_full_condition.notify_one();
|
|
}
|
|
}
|
|
|
|
return task;
|
|
}
|
|
|
|
void TaskInterface::wait_for_fresh() {
|
|
std::unique_lock<std::mutex> lock (this->fresh_queue_empty_mutex);
|
|
|
|
// we will be notified either when there is new data or the program has been stopped
|
|
this->fresh_queue_empty_condition.wait(lock, [&] { return !this->fresh_queue_empty() || !running(); });
|
|
}
|
|
|
|
void TaskInterface::wait_for_finished() {
|
|
std::unique_lock<std::mutex> lock (this->finished_queue_empty_mutex);
|
|
|
|
// we will be notified either when there is new data or the program has been stopped
|
|
this->finished_queue_empty_condition.wait(lock, [&] { return !this->finished_queue_empty() || !running(); });
|
|
}
|
|
|
|
void TaskInterface::wait_for_buffer_consume() {
|
|
std::unique_lock<std::mutex> lock (this->fresh_queue_full_mutex);
|
|
|
|
// we will be notified either when there is new data or the program has been stopped
|
|
this->fresh_queue_full_condition.wait(lock, [&] { return this->get_buffer_space() > 0 || !running(); });
|
|
}
|
|
|
|
void TaskInterface::push_finished(std::unique_ptr<OutputType> task) {
|
|
std::lock_guard<std::mutex> lock(this->finished_queue_mutex);
|
|
this->finished_queue.push(std::move(task));
|
|
|
|
// there is new data, inform the upload thread
|
|
this->finished_queue_empty_condition.notify_one();
|
|
}
|
|
|
|
std::unique_ptr<OutputType> TaskInterface::pop_finished(bool& empty) {
|
|
|
|
// we first need exclusive access to the queue
|
|
std::lock_guard<std::mutex> lock (this->finished_queue_mutex);
|
|
|
|
// we have to make sure the queue wasn't emptied since the last empty call was made
|
|
// or at least inform the calling thread that the queue is currently empty
|
|
std::unique_ptr<OutputType> task;
|
|
|
|
if (!(empty = this->finished_queue.empty())) {
|
|
task = std::move(this->finished_queue.front());
|
|
this->finished_queue.pop();
|
|
}
|
|
|
|
return task;
|
|
}
|
|
|
|
bool TaskInterface::increment_design(const db::uuid_t& id) {
|
|
std::lock_guard<std::mutex> lock (this->designs_mutex);
|
|
DEBUG_PRINT("Looking for design with ID " + db::to_string(id));
|
|
|
|
// make sure the requested design is in the list of available designs
|
|
if (this->designs.find(id) == this->designs.end()) {
|
|
DEBUG_PRINT("Design not found.");
|
|
return false;
|
|
}
|
|
|
|
std::pair<size_t, std::string>& design_entry = designs[id];
|
|
|
|
// if so, increment its reference counters
|
|
++design_entry.first;
|
|
|
|
DEBUG_PRINT("Design found. Incrementing reference counter. New counter is " + std::to_string(design_entry.first));
|
|
return true;
|
|
}
|
|
|
|
void TaskInterface::decrement_design(const db::uuid_t& id) {
|
|
std::lock_guard<std::mutex> lock (this->designs_mutex);
|
|
DEBUG_PRINT("Looking to decrement design with ID " + db::to_string(id));
|
|
|
|
// make sure the requested design is in the list of available designs
|
|
if (this->designs.find(id) == this->designs.end()) {
|
|
DEBUG_PRINT("Could not find design. Not decrementing.");
|
|
return;
|
|
}
|
|
|
|
std::pair<size_t, std::string>& design_entry = designs[id];
|
|
|
|
// if so, decrement its reference counters
|
|
--design_entry.first;
|
|
|
|
DEBUG_PRINT("Design found. Decrementing reference counter. New counter is " + std::to_string(design_entry.first));
|
|
|
|
// if the reference counter hit 0, erase the design entry from the list
|
|
// of available designs
|
|
if (design_entry.first == 0) {
|
|
DEBUG_PRINT("Reference counter has hit 0. Deleting temp file from disk...");
|
|
|
|
// delete the temporary file from disk
|
|
DEBUG_PRINT("Deleting design file from disk.");
|
|
std::remove(design_entry.second.c_str());
|
|
|
|
DEBUG_PRINT("Erasing design from store.");
|
|
this->designs.erase(id);
|
|
}
|
|
}
|
|
|
|
std::string TaskInterface::get_design(const db::uuid_t& id) {
|
|
std::lock_guard<std::mutex> lock (this->designs_mutex);
|
|
|
|
// make sure the requested design is in the list of available designs
|
|
if (this->designs.find(id) == this->designs.end()) {
|
|
std::cerr << "Error: Design was somehow deleted before it could reach the execution stage. This should really never happen!" << std::endl;
|
|
return "";
|
|
}
|
|
|
|
return this->designs[id].second;
|
|
}
|
|
|
|
void TaskInterface::store_design(const db::uuid_t& id, std::string& design) {
|
|
std::lock_guard<std::mutex> lock (this->designs_mutex);
|
|
|
|
DEBUG_PRINT("Henlo Storing new design with ID " + db::to_string(id));
|
|
|
|
// make sure the design isn't already in the list of design entries
|
|
// if it is, just increment its reference counter
|
|
if (this->designs.find(id) != this->designs.end()) {
|
|
DEBUG_PRINT("Design is already in here, incrementing reference counter instead.");
|
|
++(this->designs[id]).first;
|
|
return;
|
|
}
|
|
|
|
// otherwise, create a new entry for this design
|
|
this->designs[id] = {1, design};
|
|
}
|
|
|
|
size_t TaskInterface::get_buffer_space() {
|
|
std::lock_guard<std::mutex> lock(this->fresh_queue_mutex);
|
|
return this->buffer_size - this->fresh_queue.size();
|
|
}
|
|
|
|
void TaskInterface::notify_cleanup_ready() {
|
|
this->cleanup_ready.store(true, std::memory_order_seq_cst);
|
|
this->cleanup_ready_condition.notify_all();
|
|
}
|
|
|
|
void TaskInterface::wait_for_cleanup_ready() {
|
|
// lock the thread and wait to be notified
|
|
std::unique_lock<std::mutex> lock(this->cleanup_ready_mutex);
|
|
this->cleanup_ready_condition.wait(lock, [&] { return this->cleanup_ready.load(std::memory_order_seq_cst); });
|
|
}
|
|
|
|
void TaskInterface::wait_for_download_halt() {
|
|
std::unique_lock<std::mutex> lock(this->download_halt_mutex);
|
|
this->download_halt_condition.wait(lock, [&] { return !this->running(); });
|
|
}
|
|
|
|
void TaskInterface::stop() {
|
|
this->running_.store(false, std::memory_order_relaxed);
|
|
this->fresh_queue_full_condition.notify_all();
|
|
};
|
|
|
|
void TaskInterface::notify_workers_program_halt() {
|
|
this->finished_queue_empty_condition.notify_all();
|
|
this->fresh_queue_empty_condition.notify_all();
|
|
}
|
|
|
|
void TaskInterface::notify_download_halt() {
|
|
this->download_halt_condition.notify_all();
|
|
}
|